Smith Carolyn L, Abdallah Salsabil, Wong Yuen Yan, Le Phuong, Harracksingh Alicia N, Artinian Liana, Tamvacakis Arianna N, Rehder Vincent, Reese Thomas S, Senatore Adriano
National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, MD 20892.
University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada.
J Gen Physiol. 2017 Apr 3;149(4):483-510. doi: 10.1085/jgp.201611683. Epub 2017 Mar 22.
Four-domain voltage-gated Ca (Ca) channels play fundamental roles in the nervous system, but little is known about when or how their unique properties and cellular roles evolved. Of the three types of metazoan Ca channels, Ca1 (L-type), Ca2 (P/Q-, N- and R-type) and Ca3 (T-type), Ca3 channels are optimized for regulating cellular excitability because of their fast kinetics and low activation voltages. These same properties permit Ca3 channels to drive low-threshold exocytosis in select neurons and neurosecretory cells. Here, we characterize the single T-type calcium channel from (TCa3), an early diverging animal that lacks muscle, neurons, and synapses. Co-immunolocalization using antibodies against TCa3 and neurosecretory cell marker complexin labeled gland cells, which are hypothesized to play roles in paracrine signaling. Cloning and in vitro expression of TCa3 reveals that, despite roughly 600 million years of divergence from other T-type channels, it bears the defining structural and biophysical features of the Ca3 family. We also characterize the channel's cation permeation properties and find that its pore is less selective for Ca over Na compared with the human homologue Ca3.1, yet it exhibits a similar potent block of inward Na current by low external Ca concentrations (i.e., the Ca block effect). A comparison of the permeability features of TCa3 with other cloned channels suggests that Ca block is a locus of evolutionary change in T-type channel cation permeation properties and that mammalian channels distinguish themselves from invertebrate ones by bearing both stronger Ca block and higher Ca selectivity. TCa3 is the most divergent metazoan T-type calcium channel and thus provides an evolutionary perspective on Ca3 channel structure-function properties, ion selectivity, and cellular physiology.
四结构域电压门控钙(Ca)通道在神经系统中发挥着重要作用,但对于它们独特的特性和细胞功能何时以及如何进化,我们却知之甚少。在三种后生动物钙通道类型中,即Ca1(L型)、Ca2(P/Q -、N - 和R型)和Ca3(T型),Ca3通道因其快速动力学和低激活电压而在调节细胞兴奋性方面表现出色。这些相同的特性使Ca3通道能够在特定的神经元和神经分泌细胞中驱动低阈值胞吐作用。在这里,我们对来自一种早期分化动物(缺乏肌肉、神经元和突触)的单个T型钙通道(TCa3)进行了表征。使用针对TCa3的抗体和神经分泌细胞标记物复合体蛋白进行的共免疫定位标记了腺细胞,据推测这些腺细胞在旁分泌信号传导中发挥作用。TCa3的克隆和体外表达表明,尽管与其他T型通道大约有6亿年的分化时间,但它具有Ca3家族确定的结构和生物物理特征。我们还对该通道的阳离子渗透特性进行了表征,发现与人类同源物Ca3.1相比,其孔对Ca的选择性低于对Na的选择性,但在低外部Ca浓度下(即Ca阻断效应),它对内向Na电流表现出类似的强效阻断作用。将TCa3的渗透特性与其他克隆通道进行比较表明,Ca阻断是T型通道阳离子渗透特性进化变化的一个位点,并且哺乳动物通道通过具有更强的Ca阻断和更高的Ca选择性而与无脊椎动物通道区分开来。TCa3是最具分化性的后生动物T型钙通道,因此为Ca3通道的结构 - 功能特性、离子选择性和细胞生理学提供了一个进化视角。