Hasler Udo, Nunes Paula, Bouley Richard, Lu Hua A J, Matsuzaki Toshiyuki, Brown Dennis
Massachusetts General Hospital Center for Systems Biology, Program in Membrane Biology and Nephrology Division, Massachusetts General Hospital, Boston, Massachusetts 02114-2790, USA.
J Biol Chem. 2008 Sep 26;283(39):26643-61. doi: 10.1074/jbc.M801071200. Epub 2008 Jul 29.
The unique phenotype of renal medullary cells allows them to survive and functionally adapt to changes of interstitial osmolality/tonicity. We investigated the effects of acute hypertonic challenge on AQP2 (aquaporin-2) water channel trafficking. In the absence of vasopressin, hypertonicity alone induced rapid (<10 min) plasma membrane accumulation of AQP2 in rat kidney collecting duct principal cells in situ, and in several kidney epithelial lines. Confocal microscopy revealed that AQP2 also accumulated in the trans-Golgi network (TGN) following hypertonic challenge. AQP2 mutants that mimic the Ser(256)-phosphorylated and -nonphosphorylated state accumulated at the cell surface and TGN, respectively. Hypertonicity did not induce a change in cytosolic cAMP concentration, but inhibition of either calmodulin or cAMP-dependent protein kinase A activity blunted the hypertonicity-induced increase of AQP2 cell surface expression. Hypertonicity increased p38, ERK1/2, and JNK MAPK activity. Inhibiting MAPK activity abolished hypertonicity-induced accumulation of AQP2 at the cell surface but did not affect either vasopressin-dependent AQP2 trafficking or hypertonicity-induced AQP2 accumulation in the TGN. Finally, increased AQP2 cell surface expression induced by hypertonicity largely resulted from a reduction in endocytosis but not from an increase in exocytosis. These data indicate that acute hypertonicity profoundly alters AQP2 trafficking and that hypertonicity-induced AQP2 accumulation at the cell surface depends on MAP kinase activity. This may have important implications on adaptational processes governing transcellular water flux and/or cell survival under extreme conditions of hypertonicity.
肾髓质细胞独特的表型使其能够存活并在功能上适应间质渗透压/张力的变化。我们研究了急性高渗刺激对水通道蛋白2(AQP2)水通道转运的影响。在没有抗利尿激素的情况下,单纯高渗就可在原位大鼠肾集合管主细胞以及几种肾上皮细胞系中诱导AQP2快速(<10分钟)在质膜上积聚。共聚焦显微镜显示,高渗刺激后AQP2也积聚在反式高尔基体网络(TGN)中。模拟Ser(256)磷酸化和非磷酸化状态的AQP2突变体分别在细胞表面和TGN中积聚。高渗并未引起胞质环磷酸腺苷(cAMP)浓度的变化,但抑制钙调蛋白或cAMP依赖性蛋白激酶A的活性会减弱高渗诱导的AQP2细胞表面表达增加。高渗会增加p38、细胞外信号调节激酶1/2(ERK1/2)和应激活化蛋白激酶(JNK)丝裂原活化蛋白激酶(MAPK)的活性。抑制MAPK活性可消除高渗诱导的AQP2在细胞表面的积聚,但不影响抗利尿激素依赖性的AQP2转运或高渗诱导的AQP2在TGN中的积聚。最后,高渗诱导的AQP2细胞表面表达增加主要是由于内吞作用的减少而非外排作用的增加。这些数据表明,急性高渗会深刻改变AQP2的转运,且高渗诱导的AQP2在细胞表面的积聚依赖于MAP激酶活性。这可能对在高渗极端条件下控制跨细胞水通量和/或细胞存活的适应性过程具有重要意义。