Takai Ken, Nakamura Kentaro, Toki Tomohiro, Tsunogai Urumu, Miyazaki Masayuki, Miyazaki Junichi, Hirayama Hisako, Nakagawa Satoshi, Nunoura Takuro, Horikoshi Koki
Subground Animalcule Retrieval Program, Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima-cho, Yokosuka 237-0061, Japan.
Proc Natl Acad Sci U S A. 2008 Aug 5;105(31):10949-54. doi: 10.1073/pnas.0712334105. Epub 2008 Jul 29.
We have developed a technique for cultivation of chemolithoautotrophs under high hydrostatic pressures that is successfully applicable to various types of deep-sea chemolithoautotrophs, including methanogens. It is based on a glass-syringe-sealing liquid medium and gas mixture used in conjunction with a butyl rubber piston and a metallic needle stuck into butyl rubber. By using this technique, growth, survival, and methane production of a newly isolated, hyperthermophilic methanogen Methanopyrus kandleri strain 116 are characterized under high temperatures and hydrostatic pressures. Elevated hydrostatic pressures extend the temperature maximum for possible cell proliferation from 116 degrees C at 0.4 MPa to 122 degrees C at 20 MPa, providing the potential for growth even at 122 degrees C under an in situ high pressure. In addition, piezophilic growth significantly affected stable carbon isotope fractionation of methanogenesis from CO(2). Under conventional growth conditions, the isotope fractionation of methanogenesis by M. kandleri strain 116 was similar to values (-34 per thousand to -27 per thousand) previously reported for other hydrogenotrophic methanogens. However, under high hydrostatic pressures, the isotope fractionation effect became much smaller (< -12 per thousand), and the kinetic isotope effect at 122 degrees C and 40 MPa was -9.4 per thousand, which is one of the smallest effects ever reported. This observation will shed light on the sources and production mechanisms of deep-sea methane.
我们开发了一种在高静水压力下培养化能无机自养菌的技术,该技术已成功应用于包括产甲烷菌在内的各种深海化能无机自养菌。它基于一种玻璃注射器密封的液体培养基和气体混合物,与丁基橡胶活塞以及插入丁基橡胶的金属针配合使用。通过使用该技术,对新分离的嗜热产甲烷菌坎氏甲烷嗜热菌菌株116在高温和高静水压力下的生长、存活及甲烷产生特性进行了表征。升高的静水压力将可能的细胞增殖温度上限从0.4兆帕时的116摄氏度扩展到20兆帕时的122摄氏度,这为在原位高压下甚至在122摄氏度时的生长提供了可能。此外,嗜压生长显著影响了由二氧化碳产生甲烷过程中的稳定碳同位素分馏。在常规生长条件下,坎氏甲烷嗜热菌菌株116产生甲烷的同位素分馏与先前报道的其他氢营养型产甲烷菌的值(-34‰至-27‰)相似。然而,在高静水压力下,同位素分馏效应变得小得多(< -12‰),在122摄氏度和40兆帕时的动力学同位素效应为-9.4‰,这是有史以来报道的最小效应之一。这一观察结果将为深海甲烷的来源和产生机制提供线索。