Suppr超能文献

关于玻璃形成材料中固有结构的作用:I. 玻璃化过程。

On the role of inherent structures in glass-forming materials: I. The vitrification process.

作者信息

Tsalikis Dimitrios G, Lempesis Nikolaos, Boulougouris Georgios C, Theodorou Doros N

机构信息

School of Chemical Engineering, National Technical University of Athens, Zografou Campus, GR-15780 Athens, Greece.

出版信息

J Phys Chem B. 2008 Aug 28;112(34):10619-27. doi: 10.1021/jp801296k. Epub 2008 Aug 1.

Abstract

In this work, we investigate the role of inherent structures in the vitrification process of glass-forming materials by using a two-component Lennard-Jones mixture. We start with a simplified model that describes the dynamics of the atomistic system as a Poisson process consisting of a series of transitions from one potential energy minimum (inherent structure) to another, the rate of individual transitions being described by a first-order kinetic law. We investigate the validity of this model by comparing the mean square displacement resulting from atomistic molecular dynamics (MD) trajectories with the corresponding mean square displacement based on inherent structures. Furthermore, in the case of vitrification via stepwise cooling, we identify the role of the potential energy landscape in determining the properties of the resulting glass. Interestingly, the cooling rate is not sufficient to define the resulting glass in a stepwise cooling process, because the time spent by the system at different temperatures (length of the steps) has a highly nonlinear impact on the properties of the resulting glass. In contrast to previous investigations of supercooled liquids, we focus on a range of temperatures close to and below the glass transition temperature, where the use of MD is incapable of producing equilibrated samples of the metastable supercooled state. Our aim is to develop a methodology that enables mapping the dynamics under these conditions to a coarse-grained first-order kinetic model based on the Poisson process approximation. This model can be used in order to extend our dynamical sampling ability to much broader time scales and therefore allow us to create computer glasses with cooling rates closer to those used experimentally. In a continuation to this work, we provide the mathematical formulation for lifting the coarse-grained Poisson process model and reproducing the full dynamics of the atomistic system.

摘要

在这项工作中,我们通过使用双组分 Lennard-Jones 混合物来研究固有结构在玻璃形成材料玻璃化过程中的作用。我们从一个简化模型开始,该模型将原子系统的动力学描述为一个泊松过程,由一系列从一个势能极小值(固有结构)到另一个势能极小值的转变组成,单个转变的速率由一阶动力学定律描述。我们通过比较原子分子动力学(MD)轨迹产生的均方位移与基于固有结构的相应均方位移来研究该模型的有效性。此外,在通过逐步冷却进行玻璃化的情况下,我们确定了势能景观在决定所得玻璃性质方面的作用。有趣的是,冷却速率不足以在逐步冷却过程中定义所得玻璃,因为系统在不同温度下花费的时间(步骤的长度)对所得玻璃的性质有高度非线性的影响。与先前对过冷液体的研究不同,我们关注接近和低于玻璃化转变温度的一系列温度,在这些温度下,MD 无法产生亚稳态过冷状态的平衡样本。我们的目标是开发一种方法,能够将这些条件下的动力学映射到基于泊松过程近似的粗粒度一阶动力学模型。该模型可用于将我们的动力学采样能力扩展到更广泛的时间尺度,从而使我们能够创建冷却速率更接近实验所用速率的计算机玻璃。在这项工作的后续研究中,我们提供了提升粗粒度泊松过程模型并再现原子系统完整动力学的数学公式。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验