Suppr超能文献

酵母中同义密码子使用上相互冲突的选择压力表明对mRNA二级结构存在选择。

Conflicting selection pressures on synonymous codon use in yeast suggest selection on mRNA secondary structures.

作者信息

Stoletzki Nina

机构信息

Ludwig-Maximilan Universität, Biocenter, Grosshadernerstr, 2, D-82151 Planegg-Martinsried, Germany.

出版信息

BMC Evol Biol. 2008 Jul 31;8:224. doi: 10.1186/1471-2148-8-224.

Abstract

BACKGROUND

Eukaryotic mRNAs often contain secondary structures in their untranslated regions that are involved in expression regulation. Whether secondary structures in the protein coding regions are of functional importance remains unclear: laboratory studies suggest stable secondary structures within the protein coding sequence interfere with translation, while several bioinformatic studies indicate stable mRNA structures are more frequent than expected.

RESULTS

In contrast to several studies testing for unexpected structural stabilities, I directly compare the selective constraint of sites that differ in their structural importance. I.e. for each nucleotide, I identify whether it is paired with another nucleotide, or unpaired, in the predicted secondary structure. I assume paired sites are more important for the predicted secondary structure than unpaired sites. I look at protein coding yeast sequences and use optimal codons and synonymous substitutions to test for structural constraints. As expected under selection for secondary structures, paired sites experience higher constraint than unpaired sites, i.e. significantly lower numbers of conserved optimal codons and consistently lower numbers of synonymous substitutions. This is true for structures predicted by different algorithms.

CONCLUSION

The results of this study are consistent with purifying selection on mRNA secondary structures in yeast protein coding sequences and suggest their biological importance. One should be aware, however, that accuracy of structure prediction is unknown for mRNAs and interrelated selective forces may contribute as well. Note that if selection pressures alternative to translational selection affect synonymous (and optimal) codon use, this may lead to under- or over-estimates of selective strength on optimal codon use depending on strength and direction of translational selection.

摘要

背景

真核生物的信使核糖核酸(mRNA)在其非翻译区通常含有参与表达调控的二级结构。蛋白质编码区的二级结构是否具有功能重要性仍不清楚:实验室研究表明,蛋白质编码序列内的稳定二级结构会干扰翻译,而多项生物信息学研究表明,稳定的mRNA结构比预期的更为常见。

结果

与多项测试意外结构稳定性的研究不同,我直接比较了在结构重要性上存在差异的位点的选择约束。也就是说,对于每个核苷酸,我确定它在预测的二级结构中是与另一个核苷酸配对还是未配对。我假设配对位点对预测的二级结构比未配对位点更重要。我研究了蛋白质编码的酵母序列,并使用最优密码子和同义替换来测试结构约束。正如在二级结构选择下所预期的那样,配对位点比未配对位点受到更高的约束,即保守的最优密码子数量显著更低,同义替换数量也始终更低。不同算法预测的结构都是如此。

结论

本研究结果与酵母蛋白质编码序列中mRNA二级结构的纯化选择一致,并表明了它们的生物学重要性。然而,应该注意的是,mRNA的结构预测准确性未知,相互关联的选择力也可能起作用。请注意,如果除翻译选择之外的选择压力影响同义(和最优)密码子的使用,这可能会导致根据翻译选择的强度和方向对最优密码子使用的选择强度估计过低或过高。

相似文献

2
A periodic pattern of mRNA secondary structure created by the genetic code.
Nucleic Acids Res. 2006 May 8;34(8):2428-37. doi: 10.1093/nar/gkl287. Print 2006.
3
Widespread position-specific conservation of synonymous rare codons within coding sequences.
PLoS Comput Biol. 2017 May 5;13(5):e1005531. doi: 10.1371/journal.pcbi.1005531. eCollection 2017 May.
6
Selection intensity for codon bias.
Genetics. 1994 Sep;138(1):227-34. doi: 10.1093/genetics/138.1.227.
8
10
Selection on codon bias in yeast: a transcriptional hypothesis.
Nucleic Acids Res. 2013 Nov;41(20):9382-95. doi: 10.1093/nar/gkt740. Epub 2013 Aug 13.

引用本文的文献

1
Comparative RNA Genomics.
Methods Mol Biol. 2024;2802:347-393. doi: 10.1007/978-1-0716-3838-5_12.
3
Analysis of the codon usage pattern in Middle East Respiratory Syndrome Coronavirus.
Oncotarget. 2017 Nov 27;8(66):110337-110349. doi: 10.18632/oncotarget.22738. eCollection 2017 Dec 15.
4
The Evolutionary Basis of Translational Accuracy in Plants.
G3 (Bethesda). 2017 Jul 5;7(7):2363-2373. doi: 10.1534/g3.117.040626.
5
Evolution of Synonymous Codon Usage in the Mitogenomes of Certain Species of Bilaterian Lineage with Special Reference to Chaetognatha.
Bioinform Biol Insights. 2016 Sep 22;10:167-84. doi: 10.4137/BBI.S38192. eCollection 2016.
7
Adaptive Evolution Is Substantially Impeded by Hill-Robertson Interference in Drosophila.
Mol Biol Evol. 2016 Feb;33(2):442-55. doi: 10.1093/molbev/msv236. Epub 2015 Oct 22.
10
Strong purifying selection at synonymous sites in D. melanogaster.
PLoS Genet. 2013 May;9(5):e1003527. doi: 10.1371/journal.pgen.1003527. Epub 2013 May 30.

本文引用的文献

1
Considerations in the identification of functional RNA structural elements in genomic alignments.
BMC Bioinformatics. 2007 Jan 30;8:33. doi: 10.1186/1471-2105-8-33.
2
Looking for organization patterns of highly expressed genes: purine-pyrimidine composition of precursor mRNAs.
J Mol Evol. 2007 Feb;64(2):248-60. doi: 10.1007/s00239-006-0135-6. Epub 2007 Jan 8.
4
A "silent" polymorphism in the MDR1 gene changes substrate specificity.
Science. 2007 Jan 26;315(5811):525-8. doi: 10.1126/science.1135308. Epub 2006 Dec 21.
5
Nucleosome positions predicted through comparative genomics.
Nat Genet. 2006 Oct;38(10):1210-5. doi: 10.1038/ng1878. Epub 2006 Sep 10.
6
A genomic code for nucleosome positioning.
Nature. 2006 Aug 17;442(7104):772-8. doi: 10.1038/nature04979. Epub 2006 Jul 19.
7
Sequence-resolved detection of pausing by single RNA polymerase molecules.
Cell. 2006 Jun 16;125(6):1083-94. doi: 10.1016/j.cell.2006.04.032.
8
Prediction of RNA secondary structure by free energy minimization.
Curr Opin Struct Biol. 2006 Jun;16(3):270-8. doi: 10.1016/j.sbi.2006.05.010. Epub 2006 May 19.
9
Structures of regulatory elements in mRNAs.
Curr Opin Struct Biol. 2006 Jun;16(3):299-306. doi: 10.1016/j.sbi.2006.05.001. Epub 2006 May 16.
10
A periodic pattern of mRNA secondary structure created by the genetic code.
Nucleic Acids Res. 2006 May 8;34(8):2428-37. doi: 10.1093/nar/gkl287. Print 2006.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验