Suppr超能文献

线性约束最小方差波束形成器功能磁共振逆成像

Linear constraint minimum variance beamformer functional magnetic resonance inverse imaging.

作者信息

Lin Fa-Hsuan, Witzel Thomas, Zeffiro Thomas A, Belliveau John W

机构信息

Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan.

出版信息

Neuroimage. 2008 Nov 1;43(2):297-311. doi: 10.1016/j.neuroimage.2008.06.038. Epub 2008 Jul 11.

Abstract

Accurate estimation of the timing of neural activity is required to fully model the information flow among functionally specialized regions whose joint activity underlies perception, cognition and action. Attempts to detect the fine temporal structure of task-related activity would benefit from functional imaging methods allowing higher sampling rates. Spatial filtering techniques have been used in magnetoencephalography source imaging applications. In this work, we use the linear constraint minimal variance (LCMV) beamformer localization method to reconstruct single-shot volumetric functional magnetic resonance imaging (fMRI) data using signals acquired simultaneously from all channels of a high density radio-frequency (RF) coil array. The LCMV beamformer method generalizes the existing volumetric magnetic resonance inverse imaging (InI) technique, achieving higher detection sensitivity while maintaining whole-brain spatial coverage and 100 ms temporal resolution. In this paper, we begin by introducing the LCMV reconstruction formulation and then quantitatively assess its performance using both simulated and empirical data. To demonstrate the sensitivity and inter-subject reliability of volumetric LCMV InI, we employ an event-related design to probe the spatial and temporal properties of task-related hemodynamic signal modulations in primary visual cortex. Compared to minimum-norm estimate (MNE) reconstructions, LCMV offers better localization accuracy and superior detection sensitivity. Robust results from both single subject and group analyses demonstrate the excellent sensitivity and specificity of volumetric InI in detecting the spatial and temporal structure of task-related brain activity.

摘要

要全面模拟功能特化区域之间的信息流,就需要准确估计神经活动的时间,这些区域的联合活动是感知、认知和行动的基础。检测与任务相关活动的精细时间结构的尝试将受益于允许更高采样率的功能成像方法。空间滤波技术已用于脑磁图源成像应用中。在这项工作中,我们使用线性约束最小方差(LCMV)波束形成器定位方法,利用从高密度射频(RF)线圈阵列的所有通道同时采集的信号来重建单次容积功能磁共振成像(fMRI)数据。LCMV波束形成器方法推广了现有的容积磁共振逆成像(InI)技术,在保持全脑空间覆盖和100毫秒时间分辨率的同时,实现了更高的检测灵敏度。在本文中,我们首先介绍LCMV重建公式,然后使用模拟数据和经验数据对其性能进行定量评估。为了证明容积LCMV InI的灵敏度和受试者间可靠性,我们采用事件相关设计来探究初级视觉皮层中与任务相关的血流动力学信号调制的空间和时间特性。与最小范数估计(MNE)重建相比,LCMV具有更好的定位精度和更高的检测灵敏度。单受试者和组分析的稳健结果证明了容积InI在检测与任务相关的脑活动的空间和时间结构方面具有出色的灵敏度和特异性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9533/3169007/8c51e1d89a6c/nihms-321044-f0001.jpg

相似文献

9
Simultaneous multi-slice inverse imaging of the human brain.人脑的同时多层反成像。
Sci Rep. 2017 Dec 5;7(1):17019. doi: 10.1038/s41598-017-16976-0.

引用本文的文献

6
15 Years MR-encephalography.15 年磁共振脑成像。
MAGMA. 2021 Feb;34(1):85-108. doi: 10.1007/s10334-020-00891-z. Epub 2020 Oct 20.
7
Comparison of beamformer implementations for MEG source localization.脑磁图源定位的波束形成器实现方法比较。
Neuroimage. 2020 Aug 1;216:116797. doi: 10.1016/j.neuroimage.2020.116797. Epub 2020 Apr 8.
9
Simultaneous multi-slice inverse imaging of the human brain.人脑的同时多层反成像。
Sci Rep. 2017 Dec 5;7(1):17019. doi: 10.1038/s41598-017-16976-0.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验