Suppr超能文献

提高功能磁共振成像(fMRI)采样率可改善格兰杰因果关系估计。

Increasing fMRI sampling rate improves Granger causality estimates.

作者信息

Lin Fa-Hsuan, Ahveninen Jyrki, Raij Tommi, Witzel Thomas, Chu Ying-Hua, Jääskeläinen Iiro P, Tsai Kevin Wen-Kai, Kuo Wen-Jui, Belliveau John W

机构信息

Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan; Department of Biomedical Engineering and Computational Science, Aalto University, Espoo, Finland.

Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America.

出版信息

PLoS One. 2014 Jun 26;9(6):e100319. doi: 10.1371/journal.pone.0100319. eCollection 2014.

Abstract

Estimation of causal interactions between brain areas is necessary for elucidating large-scale functional brain networks underlying behavior and cognition. Granger causality analysis of time series data can quantitatively estimate directional information flow between brain regions. Here, we show that such estimates are significantly improved when the temporal sampling rate of functional magnetic resonance imaging (fMRI) is increased 20-fold. Specifically, healthy volunteers performed a simple visuomotor task during blood oxygenation level dependent (BOLD) contrast based whole-head inverse imaging (InI). Granger causality analysis based on raw InI BOLD data sampled at 100-ms resolution detected the expected causal relations, whereas when the data were downsampled to the temporal resolution of 2 s typically used in echo-planar fMRI, the causality could not be detected. An additional control analysis, in which we SINC interpolated additional data points to the downsampled time series at 0.1-s intervals, confirmed that the improvements achieved with the real InI data were not explainable by the increased time-series length alone. We therefore conclude that the high-temporal resolution of InI improves the Granger causality connectivity analysis of the human brain.

摘要

估计脑区之间的因果相互作用对于阐明行为和认知背后的大规模功能性脑网络是必要的。对时间序列数据进行格兰杰因果分析可以定量估计脑区之间的方向信息流。在此,我们表明,当功能磁共振成像(fMRI)的时间采样率提高20倍时,此类估计会显著改善。具体而言,健康志愿者在基于血氧水平依赖(BOLD)对比的全脑逆成像(InI)过程中执行了一项简单的视觉运动任务。基于以100毫秒分辨率采样的原始InI BOLD数据进行的格兰杰因果分析检测到了预期的因果关系,而当数据被下采样到回波平面fMRI中通常使用的2秒时间分辨率时,则无法检测到因果关系。另一项对照分析中,我们以0.1秒的间隔对下采样时间序列进行SINC插值额外的数据点,证实了真实InI数据所实现的改进不能仅通过增加时间序列长度来解释。因此,我们得出结论,InI的高时间分辨率改善了人类大脑的格兰杰因果连接性分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a62b/4072680/3b5ca1779fd1/pone.0100319.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验