Ting Jo-Anne, D'Souza Aaron, Yamamoto Kenji, Yoshioka Toshinori, Hoffman Donna, Kakei Shinji, Sergio Lauren, Kalaska John, Kawato Mitsuo, Strick Peter, Schaal Stefan
University of Southern California, Los Angeles, CA 90089, USA.
Neural Netw. 2008 Oct;21(8):1112-31. doi: 10.1016/j.neunet.2008.06.012. Epub 2008 Jun 27.
An increasing number of projects in neuroscience require statistical analysis of high-dimensional data, as, for instance, in the prediction of behavior from neural firing or in the operation of artificial devices from brain recordings in brain-machine interfaces. Although prevalent, classical linear analysis techniques are often numerically fragile in high dimensions due to irrelevant, redundant, and noisy information. We developed a robust Bayesian linear regression algorithm that automatically detects relevant features and excludes irrelevant ones, all in a computationally efficient manner. In comparison with standard linear methods, the new Bayesian method regularizes against overfitting, is computationally efficient (unlike previously proposed variational linear regression methods, is suitable for data sets with large numbers of samples and a very high number of input dimensions) and is easy to use, thus demonstrating its potential as a drop-in replacement for other linear regression techniques. We evaluate our technique on synthetic data sets and on several neurophysiological data sets. For these neurophysiological data sets we address the question of whether EMG data collected from arm movements of monkeys can be faithfully reconstructed from neural activity in motor cortices. Results demonstrate the success of our newly developed method, in comparison with other approaches in the literature, and, from the neurophysiological point of view, confirms recent findings on the organization of the motor cortex. Finally, an incremental, real-time version of our algorithm demonstrates the suitability of our approach for real-time interfaces between brains and machines.
神经科学领域中越来越多的项目需要对高维数据进行统计分析,例如,根据神经放电预测行为,或者在脑机接口中根据大脑记录操作人工设备。尽管经典线性分析技术很普遍,但由于存在无关、冗余和噪声信息,它们在高维情况下往往在数值上不稳定。我们开发了一种强大的贝叶斯线性回归算法,该算法能自动检测相关特征并排除无关特征,且所有这些操作都具有计算效率。与标准线性方法相比,新的贝叶斯方法能防止过拟合,计算效率高(与先前提出的变分线性回归方法不同,适用于具有大量样本和非常高输入维度的数据集)且易于使用,因此显示出其作为其他线性回归技术直接替代品的潜力。我们在合成数据集和几个神经生理学数据集上评估了我们的技术。对于这些神经生理学数据集,我们探讨了从猴子手臂运动收集的肌电图数据是否可以从运动皮层的神经活动中准确重建的问题。结果表明,与文献中的其他方法相比,我们新开发的方法取得了成功,并且从神经生理学角度证实了关于运动皮层组织的最新发现。最后,我们算法的增量实时版本证明了我们的方法适用于大脑与机器之间的实时接口。