Suppr超能文献

组平均差:活动轮廓的终止准则。

Group average difference: a termination criterion for active contour.

机构信息

Division of Bioengineering, School of Chemical & Biomedical Engineering, Nanyang Technological University, N1.3-B2-09, 70 Nanyang Drive, Singapore, 637457, Singapore.

出版信息

J Digit Imaging. 2012 Apr;25(2):279-93. doi: 10.1007/s10278-011-9405-y.

Abstract

This paper presents a termination criterion for active contour that does not involve alteration of the energy functional. The criterion is based on the area difference of the contour during evolution. In this criterion, the evolution of the contour terminates when the area difference fluctuates around a constant. The termination criterion is tested using parametric gradient vector flow active contour with contour resampling and normal force selection. The usefulness of the criterion is shown through its trend, speed, accuracy, shape insensitivity, and insensitivity to contour resampling. The metric used in the proposed criterion demonstrated a steadily decreasing trend. For automatic implementation in which different shapes need to be segmented, the proposed criterion demonstrated almost 50% and 60% total time reduction while achieving similar accuracy as compared with the pixel movement-based method in the segmentation of synthetic and real medical images, respectively. Our results also show that the proposed termination criterion is insensitive to shape variation and contour resampling. The criterion also possesses potential to be used for other kinds of snakes.

摘要

本文提出了一种不涉及能量泛函改变的主动轮廓终止准则。该准则基于轮廓在演化过程中的面积差异。在该准则中,当轮廓的面积差异在一个常数附近波动时,轮廓的演化就会终止。该终止准则通过带有轮廓重采样和法向力选择的参数梯度向量流主动轮廓进行了测试。通过其趋势、速度、准确性、形状不敏感性和对轮廓重采样的不敏感性,展示了该准则的有效性。所提出准则中使用的度量标准表现出稳定的下降趋势。对于需要分割不同形状的自动实现,与基于像素运动的方法相比,所提出的准则在分割合成和真实医学图像时分别实现了近 50%和 60%的总时间减少,同时达到了相似的准确性。我们的结果还表明,所提出的终止准则对形状变化和轮廓重采样不敏感。该准则还具有用于其他类型的蛇形模型的潜力。

相似文献

1
Group average difference: a termination criterion for active contour.
J Digit Imaging. 2012 Apr;25(2):279-93. doi: 10.1007/s10278-011-9405-y.
2
A novel content-based active contour model for brain tumor segmentation.
Magn Reson Imaging. 2012 Jun;30(5):694-715. doi: 10.1016/j.mri.2012.01.006. Epub 2012 Mar 27.
3
A generalized level set formulation of the Mumford-Shah functional for brain MR image segmentation.
Inf Process Med Imaging. 2005;19:418-30. doi: 10.1007/11505730_35.
4
Adaptive segmentation of magnetic resonance images with intensity inhomogeneity using level set method.
Magn Reson Imaging. 2013 May;31(4):567-74. doi: 10.1016/j.mri.2012.10.010. Epub 2013 Jan 3.
5
The use of unwrapped phase in MR image segmentation: a preliminary study.
Med Image Comput Comput Assist Interv. 2005;8(Pt 2):813-20.
7
A strategic approach for cardiac MR left ventricle segmentation.
Cardiovasc Eng. 2010 Sep;10(3):163-8. doi: 10.1007/s10558-010-9102-3.
8
Brain MR image segmentation using local and global intensity fitting active contours/surfaces.
Med Image Comput Comput Assist Interv. 2008;11(Pt 1):384-92. doi: 10.1007/978-3-540-85988-8_46.
9
Influence of the noise model on level set active contour segmentation.
IEEE Trans Pattern Anal Mach Intell. 2004 Jun;26(6):799-803. doi: 10.1109/TPAMI.2004.11.
10
MRI bone segmentation using deformable models and shape priors.
Med Image Comput Comput Assist Interv. 2008;11(Pt 1):119-26. doi: 10.1007/978-3-540-85988-8_15.

本文引用的文献

1
Development of subject-specific and statistical shape models of the knee using an efficient segmentation and mesh-morphing approach.
Comput Methods Programs Biomed. 2010 Mar;97(3):232-40. doi: 10.1016/j.cmpb.2009.07.005. Epub 2009 Aug 19.
2
Automated segmentation of ultrasonic breast lesions using statistical texture classification and active contour based on probability distance.
Ultrasound Med Biol. 2009 Aug;35(8):1309-24. doi: 10.1016/j.ultrasmedbio.2008.12.007. Epub 2009 May 28.
5
A model-based, semi-global segmentation approach for automatic 3-D point landmark localization in neuroimages.
IEEE Trans Med Imaging. 2008 Aug;27(8):1034-44. doi: 10.1109/TMI.2008.915684.
6
Snakes, shapes, and gradient vector flow.
IEEE Trans Image Process. 1998;7(3):359-69. doi: 10.1109/83.661186.
7
Active contours without edges.
IEEE Trans Image Process. 2001;10(2):266-77. doi: 10.1109/83.902291.
8
A discrete dynamic contour model.
IEEE Trans Med Imaging. 1995;14(1):12-24. doi: 10.1109/42.370398.
9
Automatic segmentation of the bone and extraction of the bone-cartilage interface from magnetic resonance images of the knee.
Phys Med Biol. 2007 Mar 21;52(6):1617-31. doi: 10.1088/0031-9155/52/6/005. Epub 2007 Feb 27.
10
Level set-based bimodal segmentation with stationary global minimum.
IEEE Trans Image Process. 2006 Sep;15(9):2843-52. doi: 10.1109/tip.2006.877308.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验