Suppr超能文献

作为细胞周期蛋白依赖性激酶2抑制剂的苯并二吡唑类化合物的3D-QSAR CoMFA和CoMSIA研究

3D-QSAR CoMFA and CoMSIA study on benzodipyrazoles as cyclin dependent kinase 2 inhibitors.

作者信息

Dessalew Nigus, Singh Sanjeev Kumar

机构信息

Department of Pharmaceutical Chemistry, School of Pharmacy, Addis Ababa University, Addis Ababa, Ethiopia.

出版信息

Med Chem. 2008 Jul;4(4):313-21. doi: 10.2174/157340608784872244.

Abstract

Cyclin dependent kinase 2 (CDK2) has appeared as an important drug target over the years with a multitude of therapeutic potentials. With the intention of designing compounds with enhanced inhibitory potencies against CDK2, the 3D-QSAR CoMFA and CoMSIA study on benzodipyrazoles series is presented here. The developed models showed a strong correlative and predictive capability having a cross validated correlation co-efficient of (r(2)(cv)) 0.699 for CoMFA and 0.794 for CoMSIA models. A very good conventional and predicted correlation co-efficients were also obtained: CoMFA (r(2)(ncv), r(2)(pred): 0.883, 0.754), CoMSIA (0.937, 0.815). The models were found to be statistically robust and are expected to be of an aid to design and/or prioritize drug likes for synthesis.

摘要

多年来,细胞周期蛋白依赖性激酶2(CDK2)已成为一个具有多种治疗潜力的重要药物靶点。为了设计出对CDK2具有更强抑制效力的化合物,本文介绍了对苯并二吡唑系列进行的3D-QSAR CoMFA和CoMSIA研究。所建立的模型显示出很强的相关性和预测能力,CoMFA模型的交叉验证相关系数(r(2)(cv))为0.699,CoMSIA模型为0.794。还获得了非常好的传统相关系数和预测相关系数:CoMFA(r(2)(ncv),r(2)(pred):0.883,0.754),CoMSIA(0.937,0.815)。这些模型在统计学上是稳健的,有望有助于设计和/或确定合成药物类似物的优先级。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验