Suppr超能文献

使用药效团集成/支持向量机(PhE/SVM)方法预测细胞色素P450 2B6-底物相互作用

Prediction of cytochrome P450 2B6-substrate interactions using pharmacophore ensemble/support vector machine (PhE/SVM) approach.

作者信息

Leong Max K, Chen Tzu-Hsien

机构信息

Department of Chemistry, National Dong Hwa University, Shoufeng, Hualien, Taiwan.

出版信息

Med Chem. 2008 Jul;4(4):396-406. doi: 10.2174/157340608784872226.

Abstract

An in silico model for predicting human cytochrome P450 2B6-substrate interactions was generated based on a novel scheme, which was initially devised to predict the hERG liability (reported in Leong, M. K., Chem. Res. Toxicol., 2007, 20, 217.) using pharmacophore ensemble/support vector machine to take into account the protein conformational flexibility while interacting with structurally diverse substrates. This is of critical importance yet never being addressed by any analogue-based molecular modeling studies before. Thirty-seven molecules were chosen from the literature and scrutinized for structural integrity and data consistency, of which 26 were treated as the training set to generate models, which were subject to validation by the other 11 molecules as the test set. The predicted pK(m) values by the final PhE/SVM model were in good agreement with observed values. In addition, this in silico model produced an r(2) of 0.84 and a 10-fold cross-validation q(2) of 0.66 for the training set and an r(2) of 0.87 for the test set, asserting the fact that this PhE/SVM model is an accurate model to predict the human P450 2B6-substrates interactions and can be used as a robust prediction tool to facilitate drug discovery.

摘要

基于一种新颖的方案构建了一个用于预测人细胞色素P450 2B6与底物相互作用的计算机模拟模型,该方案最初旨在预测hERG毒性(见Leong, M. K., 《化学研究毒理学》, 2007, 20, 217.),使用药效团集合/支持向量机来考虑蛋白质在与结构多样的底物相互作用时的构象灵活性。这一点至关重要,但此前任何基于类似物的分子模拟研究都未涉及。从文献中挑选了37个分子,对其结构完整性和数据一致性进行了审查,其中26个作为训练集来生成模型,另外11个作为测试集对模型进行验证。最终的PhE/SVM模型预测的pK(m)值与观测值高度吻合。此外,该计算机模拟模型在训练集上的r(2)为0.84,10倍交叉验证的q(2)为0.66,在测试集上的r(2)为0.87,这表明该PhE/SVM模型是预测人P450 2B6与底物相互作用的准确模型,可作为一种强大的预测工具来促进药物发现。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验