Suppr超能文献

使用分层支持向量回归方法预测人细胞色素P450 2B6与底物的相互作用

Prediction of human cytochrome P450 2B6-substrate interactions using hierarchical support vector regression approach.

作者信息

Leong Max K, Chen Yen-Ming, Chen Tzu-Hsien

机构信息

Department of Chemistry, National Dong Hwa University, Shoufeng, Hualien 97401, Taiwan.

出版信息

J Comput Chem. 2009 Sep;30(12):1899-909. doi: 10.1002/jcc.21190.

Abstract

The human cytochrome P450 2B6 can metabolize a number of clinical drugs. Inhibition of CYP2B6 by coadministered multiple drugs may lead to drug-drug interactions and undesired drug toxicity. The aim of this investigation is to develop an in silico model to predict the interactions between P450 2B6 and novel inhibitors using a novel hierarchical support vector regression (HSVR) approach, which simultaneously takes into account the coverage of applicability domain (AD) and the level of predictivity. Thirty-seven molecules were deliberately selected and rigorously scrutinized from the literature data, of which 26 and 11 molecules were treated as the training set and the test set to generate the models and to validate the generated models, respectively. The generated HSVR model gave rise to an r2 value of 0.97 for observed versus predicted pK(m) values for the training set, a q2 value of 0.93 by the 10-fold cross-validation, and an r2 value of 0.82 for the test set. Additionally, the predicted results show that the HSVR model outperformed the individual local models, the global model, and the consensus model. Thus, this HSVR model provides an accurate tool for the prediction of human cytochrome P450 2B6-substrate interactions and can be utilized as a primary filter to eliminate the potential selective inhibitor of CYP2B6.

摘要

人类细胞色素P450 2B6可代谢多种临床药物。多种药物共同给药时对CYP2B6的抑制作用可能导致药物相互作用和不良药物毒性。本研究的目的是使用一种新型分层支持向量回归(HSVR)方法开发一种计算机模拟模型,以预测P450 2B6与新型抑制剂之间的相互作用,该方法同时考虑了适用域(AD)的覆盖范围和预测能力水平。从文献数据中精心挑选并严格审查了37个分子,其中26个和11个分子分别作为训练集和测试集来生成模型并验证所生成的模型。生成的HSVR模型对于训练集观察到的与预测的pK(m)值,r2值为0.97,通过10倍交叉验证q2值为0.93,对于测试集r2值为0.82。此外,预测结果表明HSVR模型优于单个局部模型、全局模型和共识模型。因此,该HSVR模型为预测人类细胞色素P450 2B6-底物相互作用提供了一种准确的工具,可作为初步筛选工具以排除CYP2B6的潜在选择性抑制剂。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验