Suppr超能文献

抗CD19和抗CD22免疫毒素在细胞内的内化差异导致不同的细胞毒性活性。

Differential cellular internalization of anti-CD19 and -CD22 immunotoxins results in different cytotoxic activity.

作者信息

Du Xing, Beers Richard, Fitzgerald David J, Pastan Ira

机构信息

Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20892-4264, USA.

出版信息

Cancer Res. 2008 Aug 1;68(15):6300-5. doi: 10.1158/0008-5472.CAN-08-0461.

Abstract

B-cell malignancies routinely express surface antigens CD19 and CD22. Immunotoxins against both antigens have been evaluated, and the immunotoxins targeting CD22 are more active. To understand this disparity in cytotoxicity and guide the screening of therapeutic targets, we compared two immunotoxins, FMC63(Fv)-PE38-targeting CD19 and RFB4(Fv)-PE38 (BL22)-targeting CD22. Six lymphoma cell lines have 4- to 9-fold more binding sites per cell for CD19 than for CD22, but BL22 is 4- to 140-fold more active than FMC63(Fv)-PE38, although they have a similar cell binding affinity (Kd, approximately 7 nmol/L). In 1 hour, large amounts of BL22 are internalized (2- to 3-fold more than the number of CD22 molecules on the cell surface), whereas only 5.2% to 16.6% of surface-bound FMC63(Fv)-PE38 is internalized. The intracellular reservoir of CD22 decreases greatly after immunotoxin internalization, indicating that it contributes to the uptake of BL22. Treatment of cells with cycloheximide does not reduce the internalization of BL22. Both internalized immunotoxins are located in the same vesicles. Our results show that the rapid internalization of large amounts of BL22 bound to CD22 makes CD22 a better therapeutic target than CD19 for immunotoxins and probably for other immunoconjugates that act inside cells.

摘要

B细胞恶性肿瘤通常表达表面抗原CD19和CD22。针对这两种抗原的免疫毒素已得到评估,且靶向CD22的免疫毒素活性更高。为了解这种细胞毒性差异并指导治疗靶点的筛选,我们比较了两种免疫毒素,即靶向CD19的FMC63(Fv)-PE38和靶向CD22的RFB4(Fv)-PE38(BL22)。六种淋巴瘤细胞系中,每个细胞上CD19的结合位点比CD22多4至9倍,但BL22的活性比FMC63(Fv)-PE38高4至140倍,尽管它们具有相似的细胞结合亲和力(解离常数Kd约为7 nmol/L)。在1小时内,大量的BL22被内化(比细胞表面CD22分子数量多2至3倍),而表面结合的FMC63(Fv)-PE38只有5.2%至16.6%被内化。免疫毒素内化后,CD22的细胞内储备大幅减少,表明其有助于BL22的摄取。用放线菌酮处理细胞不会降低BL22的内化。两种内化的免疫毒素都位于相同的囊泡中。我们的结果表明,与CD22结合的大量BL22的快速内化使得CD22成为比CD19更好的免疫毒素治疗靶点,可能对于其他在细胞内起作用的免疫缀合物也是如此。

相似文献

8
Induction of caspase-dependent programmed cell death in B-cell chronic lymphocytic leukemia by anti-CD22 immunotoxins.
Blood. 2004 Apr 1;103(7):2718-26. doi: 10.1182/blood-2003-04-1317. Epub 2003 Oct 2.

引用本文的文献

1
A multi-scale semi-mechanistic CK/PD model for CAR T-cell therapy.
Front Syst Biol. 2024 Aug 29;4:1380018. doi: 10.3389/fsysb.2024.1380018. eCollection 2024.
2
Antibody-Drug Conjugates (ADCs): current and future biopharmaceuticals.
J Hematol Oncol. 2025 Apr 30;18(1):51. doi: 10.1186/s13045-025-01704-3.
4
A high-throughput lysosome trafficking assay guides ligand selection and elucidates differences in CD22-targeted nanodelivery.
Sci Technol Adv Mater. 2024 May 13;25(1):2351791. doi: 10.1080/14686996.2024.2351791. eCollection 2024.
5
Antibody-Drug Conjugates: The Dynamic Evolution from Conventional to Next-Generation Constructs.
Cancers (Basel). 2024 Jan 20;16(2):447. doi: 10.3390/cancers16020447.
6
Solving the mystery of the FMC63-CD19 affinity.
Sci Rep. 2023 Dec 27;13(1):23024. doi: 10.1038/s41598-023-48528-0.
7
8
Targeting CD22 for B-cell hematologic malignancies.
Exp Hematol Oncol. 2023 Oct 11;12(1):90. doi: 10.1186/s40164-023-00454-7.
9
Exploration of the antibody-drug conjugate clinical landscape.
MAbs. 2023 Jan-Dec;15(1):2229101. doi: 10.1080/19420862.2023.2229101.
10
Inotuzumab ozogamicin in B-cell precursor acute lymphoblastic leukemia: efficacy, toxicity, and practical considerations.
Front Immunol. 2023 Aug 3;14:1237738. doi: 10.3389/fimmu.2023.1237738. eCollection 2023.

本文引用的文献

1
High CD21 expression inhibits internalization of anti-CD19 antibodies and cytotoxicity of an anti-CD19-drug conjugate.
Br J Haematol. 2008 Jan;140(1):46-58. doi: 10.1111/j.1365-2141.2007.06883.x. Epub 2007 Nov 7.
2
FCRL1 on chronic lymphocytic leukemia, hairy cell leukemia, and B-cell non-Hodgkin lymphoma as a target of immunotoxins.
Blood. 2008 Jan 1;111(1):338-43. doi: 10.1182/blood-2007-07-102350. Epub 2007 Sep 25.
3
Distinct endocytic mechanisms of CD22 (Siglec-2) and Siglec-F reflect roles in cell signaling and innate immunity.
Mol Cell Biol. 2007 Aug;27(16):5699-710. doi: 10.1128/MCB.00383-07. Epub 2007 Jun 11.
4
A CD19-specific single-chain immunotoxin mediates potent apoptosis of B-lineage leukemic cells.
Leukemia. 2007 Jul;21(7):1405-12. doi: 10.1038/sj.leu.2404687. Epub 2007 May 10.
5
Immunotoxin treatment of cancer.
Annu Rev Med. 2007;58:221-37. doi: 10.1146/annurev.med.58.070605.115320.
6
Immunotoxin therapy of cancer.
Nat Rev Cancer. 2006 Jul;6(7):559-65. doi: 10.1038/nrc1891.
7
Monoclonal antibody therapy of cancer.
Nat Biotechnol. 2005 Sep;23(9):1147-57. doi: 10.1038/nbt1137.
8
Arming antibodies: prospects and challenges for immunoconjugates.
Nat Biotechnol. 2005 Sep;23(9):1137-46. doi: 10.1038/nbt1141.
9
Phase I trial of recombinant immunotoxin RFB4(dsFv)-PE38 (BL22) in patients with B-cell malignancies.
J Clin Oncol. 2005 Sep 20;23(27):6719-29. doi: 10.1200/JCO.2005.11.437. Epub 2005 Aug 1.
10
Mesothelin: a new target for immunotherapy.
Clin Cancer Res. 2004 Jun 15;10(12 Pt 1):3937-42. doi: 10.1158/1078-0432.CCR-03-0801.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验