基于自组织增量神经网络的快速最近邻分类器。

A fast nearest neighbor classifier based on self-organizing incremental neural network.

作者信息

Shen Furao, Hasegawa Osamu

机构信息

The State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, 210093, PR China.

出版信息

Neural Netw. 2008 Dec;21(10):1537-47. doi: 10.1016/j.neunet.2008.07.001. Epub 2008 Jul 6.

Abstract

A fast prototype-based nearest neighbor classifier is introduced. The proposed Adjusted SOINN Classifier (ASC) is based on SOINN (self-organizing incremental neural network), it automatically learns the number of prototypes needed to determine the decision boundary, and learns new information without destroying old learned information. It is robust to noisy training data, and it realizes very fast classification. In the experiment, we use some artificial datasets and real-world datasets to illustrate ASC. We also compare ASC with other prototype-based classifiers with regard to its classification error, compression ratio, and speed up ratio. The results show that ASC has the best performance and it is a very efficient classifier.

摘要

介绍了一种基于快速原型的最近邻分类器。所提出的调整后的自组织增量神经网络分类器(ASC)基于自组织增量神经网络(SOINN),它能自动学习确定决策边界所需的原型数量,并且在不破坏已学习的旧信息的情况下学习新信息。它对有噪声的训练数据具有鲁棒性,并且实现了非常快速的分类。在实验中,我们使用一些人工数据集和真实世界数据集来说明ASC。我们还在分类误差、压缩率和加速比方面将ASC与其他基于原型的分类器进行了比较。结果表明,ASC具有最佳性能,是一种非常高效的分类器。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索