Suppr超能文献

人类Edc3的晶体结构及其功能意义。

Crystal structure of human Edc3 and its functional implications.

作者信息

Ling Sharon H M, Decker Carolyn J, Walsh Martin A, She Meipei, Parker Roy, Song Haiwei

机构信息

Laboratory of Macromolecular Structure, Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673, Singapore.

出版信息

Mol Cell Biol. 2008 Oct;28(19):5965-76. doi: 10.1128/MCB.00761-08. Epub 2008 Aug 4.

Abstract

Edc3 is an enhancer of decapping and serves as a scaffold that aggregates mRNA ribonucleoproteins together for P-body formation. Edc3 forms a network of interactions with the components of the mRNA decapping machinery and has a modular domain architecture consisting of an N-terminal Lsm domain, a central FDF domain, and a C-terminal YjeF-N domain. We have determined the crystal structure of the N-terminally truncated human Edc3 at a resolution of 2.2 A. The structure reveals that the YjeF-N domain of Edc3 possesses a divergent Rossmann fold topology that forms a dimer, which is supported by sedimentation velocity and sedimentation equilibrium analysis in solution. The dimerization interface of Edc3 is highly conserved in eukaryotes despite the overall low sequence homology across species. Structure-based site-directed mutagenesis revealed dimerization is required for efficient RNA binding, P-body formation, and likely for regulating the yeast Rps28B mRNA as well, suggesting that the dimeric form of Edc3 is a structural and functional unit in mRNA degradation.

摘要

Edc3是去帽增强子,作为一种支架将mRNA核糖核蛋白聚集在一起形成P小体。Edc3与mRNA去帽机制的组分形成相互作用网络,具有由N端Lsm结构域、中央FDF结构域和C端YjeF-N结构域组成的模块化结构域架构。我们已确定N端截短的人Edc3的晶体结构,分辨率为2.2埃。该结构表明,Edc3的YjeF-N结构域具有形成二聚体的不同Rossmann折叠拓扑结构,这在溶液中的沉降速度和沉降平衡分析中得到了支持。尽管物种间整体序列同源性较低,但Edc3的二聚化界面在真核生物中高度保守。基于结构的定点诱变表明,二聚化是有效RNA结合、P小体形成所必需的,可能对酵母Rps28B mRNA的调控也很重要,这表明Edc3的二聚体形式是mRNA降解中的结构和功能单位。

相似文献

1
Crystal structure of human Edc3 and its functional implications.
Mol Cell Biol. 2008 Oct;28(19):5965-76. doi: 10.1128/MCB.00761-08. Epub 2008 Aug 4.
2
Similar modes of interaction enable Trailer Hitch and EDC3 to associate with DCP1 and Me31B in distinct protein complexes.
Mol Cell Biol. 2008 Nov;28(21):6695-708. doi: 10.1128/MCB.00759-08. Epub 2008 Sep 2.
3
A divergent Sm fold in EDC3 proteins mediates DCP1 binding and P-body targeting.
Mol Cell Biol. 2007 Dec;27(24):8600-11. doi: 10.1128/MCB.01506-07. Epub 2007 Oct 8.
5
Edc3 function in yeast and mammals is modulated by interaction with NAD-related compounds.
G3 (Bethesda). 2014 Apr 16;4(4):613-22. doi: 10.1534/g3.114.010470.
6
Deletion analysis of LSm, FDF, and YjeF domains of Candida albicans Edc3 in hyphal growth and oxidative-stress response.
J Microbiol. 2015 Feb;53(2):111-5. doi: 10.1007/s12275-015-4727-y. Epub 2015 Jan 28.
7
The structural basis of Edc3- and Scd6-mediated activation of the Dcp1:Dcp2 mRNA decapping complex.
EMBO J. 2012 Jan 18;31(2):279-90. doi: 10.1038/emboj.2011.408. Epub 2011 Nov 15.
8
Yeast Edc3 targets RPS28B mRNA for decapping by binding to a 3' untranslated region decay-inducing regulatory element.
Mol Cell Biol. 2014 Apr;34(8):1438-51. doi: 10.1128/MCB.01584-13. Epub 2014 Feb 3.
10

引用本文的文献

1
Med13 is required for efficient P-body recruitment and autophagic degradation of Edc3 following nitrogen starvation.
Mol Biol Cell. 2024 Nov 1;35(11):ar142. doi: 10.1091/mbc.E23-12-0470. Epub 2024 Sep 25.
2
Global Discovery of Covalent Modulators of Ribonucleoprotein Granules.
J Am Chem Soc. 2023 May 24;145(20):11056-11066. doi: 10.1021/jacs.3c00165. Epub 2023 May 9.
3
RNA granules: functional compartments or incidental condensates?
Genes Dev. 2023 May 1;37(9-10):354-376. doi: 10.1101/gad.350518.123. Epub 2023 May 3.
4
Quantitative reconstitution of yeast RNA processing bodies.
Proc Natl Acad Sci U S A. 2023 Apr 4;120(14):e2214064120. doi: 10.1073/pnas.2214064120. Epub 2023 Mar 27.
5
Global profiling identifies a stress-responsive tyrosine site on EDC3 regulating biomolecular condensate formation.
Cell Chem Biol. 2022 Dec 15;29(12):1709-1720.e7. doi: 10.1016/j.chembiol.2022.11.008. Epub 2022 Dec 6.
6
Synthesis of 2-Oxoquinoline Derivatives as Dual Pim and mTORC Protein Kinase Inhibitors.
Med Chem Res. 2022 Jul;31(7):1154-1175. doi: 10.1007/s00044-022-02904-z. Epub 2022 May 26.
7
Eukaryotic mRNA decapping factors: molecular mechanisms and activity.
FEBS J. 2023 Nov;290(21):5057-5085. doi: 10.1111/febs.16626. Epub 2022 Sep 30.
8
Low complexity RGG-motif sequence is required for Processing body (P-body) disassembly.
Nat Commun. 2022 Apr 19;13(1):2077. doi: 10.1038/s41467-022-29715-5.
9
Eukaryotic mRNA Decapping Activation.
Front Genet. 2022 Mar 23;13:832547. doi: 10.3389/fgene.2022.832547. eCollection 2022.
10
Insight into the interaction between the RNA helicase CGH-1 and EDC-3 and its implications.
Sci Rep. 2021 Oct 13;11(1):20359. doi: 10.1038/s41598-021-99919-0.

本文引用的文献

3
Pat1 contains distinct functional domains that promote P-body assembly and activation of decapping.
Mol Cell Biol. 2008 Feb;28(4):1298-312. doi: 10.1128/MCB.00936-07. Epub 2007 Dec 17.
5
A divergent Sm fold in EDC3 proteins mediates DCP1 binding and P-body targeting.
Mol Cell Biol. 2007 Dec;27(24):8600-11. doi: 10.1128/MCB.01506-07. Epub 2007 Oct 8.
6
Analysis of P-body assembly in Saccharomyces cerevisiae.
Mol Biol Cell. 2007 Jun;18(6):2274-87. doi: 10.1091/mbc.e07-03-0199. Epub 2007 Apr 11.
7
P bodies and the control of mRNA translation and degradation.
Mol Cell. 2007 Mar 9;25(5):635-46. doi: 10.1016/j.molcel.2007.02.011.
8
YRA1 autoregulation requires nuclear export and cytoplasmic Edc3p-mediated degradation of its pre-mRNA.
Mol Cell. 2007 Feb 23;25(4):559-73. doi: 10.1016/j.molcel.2007.01.012.
9
The highways and byways of mRNA decay.
Nat Rev Mol Cell Biol. 2007 Feb;8(2):113-26. doi: 10.1038/nrm2104.
10
P bodies: at the crossroads of post-transcriptional pathways.
Nat Rev Mol Cell Biol. 2007 Jan;8(1):9-22. doi: 10.1038/nrm2080.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验