Huchard Elise, Weill Mylene, Cowlishaw Guy, Raymond Michel, Knapp Leslie A
CNRS, Institut des Sciences de l'Evolution, Université Montpellier 2, CC 065, Place Eugène Bataillon, 34095, Montpellier Cedex 05, France.
Immunogenetics. 2008 Oct;60(10):585-98. doi: 10.1007/s00251-008-0319-x. Epub 2008 Aug 5.
General patterns of organization in the major histocompatibility complex (MHC) have been successfully explained by the model of birth-and-death evolution, but understanding why certain MHC genes are maintained together into specific haplotypes remains challenging. The haplotype configurations of the functionally important class II DR region have been described in few primates and display important interspecific variability with respect to the extent of allelic variation, the number of loci and/or combinations of loci present. Understanding the evolutionary mechanisms driving such variation is conditional upon characterizing haplotypes in new species and identifying the selective pressures acting on haplotypes. This study explores the variability of haplotype configurations in the Mhc-DRB region (exon 2) for the first time in wild non-human primates, chacma baboons (Papio ursinus). Paur-DRB haplotypes were characterized through segregation studies and linkage disequilibrium. 23 Paur-DRB sequences and 15 haplotype configurations were identified in 199 animals. The Paur-DRB exon 2 is shown to be subjected to intense positive selection and frequent recombination. An approach recently developed for human vaccine studies was used to classify Paur-DRB sequences into supertypes, based on the physico-chemical properties of amino acids that are positively selected, thus most probably involved in antigen recognition. Sequences grouped into the same supertype (thus presumably sharing antigen-binding affinities) are non-randomly distributed within haplotypes, leading to an increased individual diversity of supertypes. Our results suggest that selection favoring haplotypes with complementary sets of DRB supertypes shapes functionally tuned haplotypes in this natural baboon population.
主要组织相容性复合体(MHC)的一般组织模式已通过生死进化模型得到成功解释,但要理解为何某些MHC基因会共同保留在特定单倍型中仍然具有挑战性。在少数灵长类动物中描述了功能重要的II类DR区域的单倍型构型,并且在等位基因变异程度、存在的基因座数量和/或基因座组合方面表现出重要的种间变异性。了解驱动这种变异的进化机制取决于在新物种中表征单倍型并确定作用于单倍型的选择压力。本研究首次在野生非人类灵长类动物东非狒狒(Papio ursinus)中探索了Mhc-DRB区域(外显子2)单倍型构型的变异性。通过分离研究和连锁不平衡对Paur-DRB单倍型进行了表征。在199只动物中鉴定出23个Paur-DRB序列和15种单倍型构型。结果表明,Paur-DRB外显子2受到强烈的正选择和频繁的重组。一种最近为人类疫苗研究开发的方法被用于根据正选择的氨基酸的物理化学性质将Paur-DRB序列分类为超级型,因此很可能参与抗原识别。分组到同一超级型中的序列(因此可能共享抗原结合亲和力)在单倍型内非随机分布,导致超级型的个体多样性增加。我们的结果表明,选择有利于具有互补DRB超级型组的单倍型,从而在这个自然狒狒种群中塑造了功能上经过调整的单倍型。