Suppr超能文献

回归校准、矩重建和插补法在回归中调整协变量测量误差的比较。

A comparison of regression calibration, moment reconstruction and imputation for adjusting for covariate measurement error in regression.

作者信息

Freedman Laurence S, Midthune Douglas, Carroll Raymond J, Kipnis Victor

机构信息

Gertner Institute for Epidemiology and Health Policy Research, Tel Hashomer, Israel.

出版信息

Stat Med. 2008 Nov 10;27(25):5195-216. doi: 10.1002/sim.3361.

Abstract

Regression calibration (RC) is a popular method for estimating regression coefficients when one or more continuous explanatory variables, X, are measured with an error. In this method, the mismeasured covariate, W, is substituted by the expectation E(X|W), based on the assumption that the error in the measurement of X is non-differential. Using simulations, we compare three versions of RC with two other 'substitution' methods, moment reconstruction (MR) and imputation (IM), neither of which rely on the non-differential error assumption. We investigate studies that have an internal calibration sub-study. For RC, we consider (i) the usual version of RC, (ii) RC applied only to the 'marker' information in the calibration study, and (iii) an 'efficient' version (ERC) in which the estimators (i) and (ii) are combined. Our results show that ERC is preferable when there is non-differential measurement error. Under this condition, there are cases where ERC is less efficient than MR or IM, but they rarely occur in epidemiology. We show that the efficiency gain of usual RC and ERC over the other methods can sometimes be dramatic. The usual version of RC carries similar efficiency gains to ERC over MR and IM, but becomes unstable as measurement error becomes large, leading to bias and poor precision. When differential measurement error does pertain, then MR and IM have considerably less bias than RC, but can have much larger variance. We demonstrate our findings with an analysis of dietary fat intake and mortality in a large cohort study.

摘要

回归校准(RC)是一种在一个或多个连续解释变量X存在测量误差时估计回归系数的常用方法。在这种方法中,基于X测量误差是非差异误差的假设,将误测的协变量W用期望E(X|W)来替代。通过模拟,我们将RC的三个版本与另外两种“替代”方法——矩重建(MR)和插补(IM)进行比较,后两种方法都不依赖于非差异误差假设。我们研究了具有内部校准子研究的情况。对于RC,我们考虑:(i)RC的常规版本;(ii)仅应用于校准研究中“标记”信息的RC;以及(iii)一种“有效”版本(ERC),其中结合了估计器(i)和(ii)。我们的结果表明,当存在非差异测量误差时,ERC更可取。在此条件下,存在ERC比MR或IM效率低的情况,但在流行病学中很少出现。我们表明,常规RC和ERC相对于其他方法的效率提升有时可能非常显著。RC的常规版本相对于MR和IM具有与ERC相似的效率提升,但随着测量误差变大变得不稳定,导致偏差和精度较差。当存在差异测量误差时,MR和IM的偏差比RC小得多,但方差可能大得多。我们通过对一项大型队列研究中膳食脂肪摄入量和死亡率的分析来证明我们的发现。

相似文献

2
Using enhanced regression calibration to combine dietary intake estimates from 24 h recall and FFQ reduces bias in diet-disease associations.
Public Health Nutr. 2019 Oct;22(15):2738-2746. doi: 10.1017/S1368980019001563. Epub 2019 Jul 2.
3
Regression analysis with covariates that have heteroscedastic measurement error.
Stat Med. 2011 Aug 15;30(18):2278-94. doi: 10.1002/sim.4261. Epub 2011 May 17.
4
A new method for dealing with measurement error in explanatory variables of regression models.
Biometrics. 2004 Mar;60(1):172-81. doi: 10.1111/j.0006-341X.2004.00164.x.
5
An imputation-based solution to using mismeasured covariates in propensity score analysis.
Stat Methods Med Res. 2017 Aug;26(4):1824-1837. doi: 10.1177/0962280215588771. Epub 2015 Jun 2.
7
Estimating and testing interactions when explanatory variables are subject to non-classical measurement error.
Stat Methods Med Res. 2016 Oct;25(5):1991-2013. doi: 10.1177/0962280213509720. Epub 2013 Dec 11.
8
9
A Nonparametric Regression Calibration for the Accelerated Failure Time Model With Measurement Error.
Stat Med. 2024 Dec 30;43(30):6073-6085. doi: 10.1002/sim.10299. Epub 2024 Dec 5.
10

引用本文的文献

1
The impact of self-report inaccuracy in the UK Biobank and its interplay with selective participation.
Nat Hum Behav. 2025 Mar;9(3):584-594. doi: 10.1038/s41562-024-02061-w. Epub 2024 Dec 18.
2
Handling missing data and measurement error for early-onset myopia risk prediction models.
BMC Med Res Methodol. 2024 Sep 6;24(1):194. doi: 10.1186/s12874-024-02319-x.
3
Recommendations on statistical approaches to account for dose uncertainties in radiation epidemiologic risk models.
Int J Radiat Biol. 2024;100(10):1393-1404. doi: 10.1080/09553002.2024.2381482. Epub 2024 Jul 26.
5
Two-Phase Sampling Designs for Data Validation in Settings with Covariate Measurement Error and Continuous Outcome.
J R Stat Soc Ser A Stat Soc. 2021 Oct;184(4):1368-1389. doi: 10.1111/rssa.12689. Epub 2021 Apr 15.
7
Bias Reduction Methods for Propensity Scores Estimated from Error-Prone EHR-Derived Covariates.
Health Serv Outcomes Res Methodol. 2021 Jun;21:169-187. doi: 10.1007/s10742-020-00219-3. Epub 2020 Sep 10.
9
Clinical relevance assessment of animal preclinical research (RAA) tool: development and explanation.
PeerJ. 2021 Jan 27;9:e10673. doi: 10.7717/peerj.10673. eCollection 2021.
10
Characterizing Measurement Error in Dietary Sodium in Longitudinal Intervention Studies.
Front Nutr. 2020 Nov 27;7:581439. doi: 10.3389/fnut.2020.581439. eCollection 2020.

本文引用的文献

2
Multiple-imputation for measurement-error correction.
Int J Epidemiol. 2006 Aug;35(4):1074-81. doi: 10.1093/ije/dyl097. Epub 2006 May 18.
3
A new method for dealing with measurement error in explanatory variables of regression models.
Biometrics. 2004 Mar;60(1):172-81. doi: 10.1111/j.0006-341X.2004.00164.x.
4
Structure of dietary measurement error: results of the OPEN biomarker study.
Am J Epidemiol. 2003 Jul 1;158(1):14-21; discussion 22-6. doi: 10.1093/aje/kwg091.
6
Efficient regression calibration for logistic regression in main study/internal validation study designs with an imperfect reference instrument.
Stat Med. 2001 Jan 15;20(1):139-160. doi: 10.1002/1097-0258(20010115)20:1<139::aid-sim644>3.0.co;2-k.
7
Correction of logistic regression relative risk estimates and confidence intervals for random within-person measurement error.
Am J Epidemiol. 1992 Dec 1;136(11):1400-13. doi: 10.1093/oxfordjournals.aje.a116453.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验