Suppr超能文献

具有异方差测量误差的协变量的回归分析。

Regression analysis with covariates that have heteroscedastic measurement error.

机构信息

Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, U.S.A..

出版信息

Stat Med. 2011 Aug 15;30(18):2278-94. doi: 10.1002/sim.4261. Epub 2011 May 17.

Abstract

We consider the estimation of the regression of an outcome Y on a covariate X, where X is unobserved, but a variable W that measures X with error is observed. A calibration sample that measures pairs of values of X and W is also available; we consider calibration samples where Y is measured (internal calibration) and not measured (external calibration). One common approach for measurement error correction is Regression Calibration (RC), which substitutes the unknown values of X by predictions from the regression of X on W estimated from the calibration sample. An alternative approach is to multiply impute the missing values of X given Y and W based on an imputation model, and then use multiple imputation (MI) combining rules for inferences. Most of current work assumes that the measurement error of W has a constant variance, whereas in many situations, the variance varies as a function of X. We consider extensions of the RC and MI methods that allow for heteroscedastic measurement error, and compare them by simulation. The MI method is shown to provide better inferences in this setting. We also illustrate the proposed methods using a data set from the BioCycle study.

摘要

我们考虑将因变量 Y 对自变量 X 的回归进行估计,其中 X 是未观测到的,但存在一个带有误差的测量变量 W。同时也有可用的校准样本,用于测量 X 和 W 的对数值;我们考虑了 Y 被测量的校准样本(内部校准)和未被测量的校准样本(外部校准)。一种常见的测量误差校正方法是回归校正(RC),它用从校准样本中估计的 X 对 W 的回归预测值来代替未知的 X 值。另一种方法是基于插补模型,对给定 Y 和 W 的 X 的缺失值进行多重插补(MI),然后使用 MI 合并规则进行推断。目前大多数研究都假设 W 的测量误差具有常数方差,而在许多情况下,方差是 X 的函数。我们考虑了 RC 和 MI 方法的扩展,允许异方差测量误差,并通过模拟进行比较。结果表明,在这种情况下,MI 方法可以提供更好的推断。我们还使用来自 BioCycle 研究的数据说明了所提出的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验