Merck & Co, Inc, Rahway, NJ , USA.
Epidemiology. 2012 Jan;23(1):165-74. doi: 10.1097/EDE.0b013e31823a4386.
Covariate measurement error is common in epidemiologic studies. Current methods for correcting measurement error with information from external calibration samples are insufficient to provide valid adjusted inferences. We consider the problem of estimating the regression of an outcome Y on covariates X and Z, where Y and Z are observed, X is unobserved, but a variable W that measures X with error is observed. Information about measurement error is provided in an external calibration sample where data on X and W (but not Y and Z) are recorded.
We describe a method that uses summary statistics from the calibration sample to create multiple imputations of the missing values of X in the regression sample, so that the regression coefficients of Y on X and Z and associated standard errors can be estimated using simple multiple imputation combining rules, yielding valid statistical inferences under the assumption of a multivariate normal distribution.
The proposed method is shown by simulation to provide better inferences than existing methods, namely the naive method, classical calibration, and regression calibration, particularly for correction for bias and achieving nominal confidence levels. We also illustrate our method with an example using linear regression to examine the relation between serum reproductive hormone concentrations and bone mineral density loss in midlife women in the Michigan Bone Health and Metabolism Study.
Existing methods fail to adjust appropriately for bias due to measurement error in the regression setting, particularly when measurement error is substantial. The proposed method corrects this deficiency.
协变量测量误差在流行病学研究中很常见。目前,使用外部校准样本中的信息来纠正测量误差的方法不足以提供有效的调整推断。我们考虑了一种估计因变量 Y 对协变量 X 和 Z 的回归的问题,其中 Y 和 Z 是观测到的,X 是未观测到的,但有一个带有误差的变量 W 来测量 X。在外部校准样本中提供了关于测量误差的信息,其中记录了 X 和 W 的数据(但没有 Y 和 Z)。
我们描述了一种使用校准样本的汇总统计数据在回归样本中创建 X 的缺失值的多个插补的方法,以便使用简单的多重插补组合规则来估计 Y 对 X 和 Z 的回归系数及其相关标准误差,从而在多元正态分布的假设下得出有效的统计推断。
通过模拟,我们证明了所提出的方法比现有的方法(即天真方法、经典校准和回归校准)提供了更好的推断,特别是在纠正偏差和实现名义置信水平方面。我们还使用密歇根骨骼健康和代谢研究中中年女性血清生殖激素浓度与骨密度丢失的线性回归示例来说明我们的方法。
现有的方法在回归设置中无法适当地调整因测量误差引起的偏差,特别是当测量误差很大时。所提出的方法纠正了这一缺陷。