Suppr超能文献

基于人类临床数据对动脉壁力学行为和应力的表征。

Characterization of arterial wall mechanical behavior and stresses from human clinical data.

作者信息

Masson Ingrid, Boutouyrie Pierre, Laurent Stéphane, Humphrey Jay D, Zidi Mustapha

机构信息

CNRS UMR 7054, Faculté de Médecine, Université Paris 12, 8 Rue du Général Sarrail, Créteil F-94010, France.

出版信息

J Biomech. 2008 Aug 28;41(12):2618-27. doi: 10.1016/j.jbiomech.2008.06.022. Epub 2008 Aug 5.

Abstract

This paper demonstrates the feasibility of material identification and wall stress computation for human common carotid arteries based on non-invasive in vivo clinical data: dynamical intraluminal pressure measured by applanation tonometry, and medial diameter and intimal-medial thickness measured by high-resolution ultrasound echotracking. The mechanical behavior was quantified assuming an axially pre-stretched, thick-walled, cylindrical artery subjected to dynamical blood pressure and perivascular constraints. The wall was further assumed to be three-dimensional and to consist of a nonlinear, hyperelastic, anisotropic, incompressible material with smooth muscle activity and residual stresses. Mechanical contributions by individual constituents--an elastin-dominated matrix, collagen fibers, and vascular smooth muscle--were accounted for using a previously proposed microstructurally motivated constitutive relation. The in vivo boundary value problem was solved semi-analytically to compute the inner pressure during a mean cardiac cycle. Using a nonlinear least-squares method, optimal model parameters were determined by minimizing differences between computed and measured inner pressures over a mean cardiac cycle. The fit-to-data from two healthy patients was very good and the predicted radial, circumferential, and axial stretch and stress fields were sensible. Hence, the proposed approach was able to identify complex geometric and material parameters directly from non-invasive in vivo human data.

摘要

本文基于无创体内临床数据,即应用压平式眼压计测量的动态腔内压力以及高分辨率超声回声跟踪测量的血管内径和内膜中层厚度,证明了对人体颈总动脉进行材料识别和壁应力计算的可行性。假设动脉为轴向预拉伸、厚壁圆柱形,承受动态血压和血管周围约束,对其力学行为进行了量化。进一步假设血管壁为三维结构,由具有平滑肌活动和残余应力的非线性、超弹性、各向异性、不可压缩材料组成。使用先前提出的基于微观结构的本构关系,考虑了各组成部分(以弹性蛋白为主的基质、胶原纤维和血管平滑肌)的力学贡献。通过半解析方法求解体内边界值问题,以计算平均心动周期内的内压。使用非线性最小二乘法,通过最小化平均心动周期内计算内压与测量内压之间的差异来确定最佳模型参数。对两名健康患者的数据拟合非常好,预测的径向、周向和轴向拉伸及应力场是合理的。因此,所提出的方法能够直接从无创体内人体数据中识别复杂的几何和材料参数。

相似文献

引用本文的文献

10
Estimation of constitutive parameters of the aortic wall using a machine learning approach.使用机器学习方法估计主动脉壁的本构参数。
Comput Methods Appl Mech Eng. 2019 Apr 15;347:201-217. doi: 10.1016/j.cma.2018.12.030. Epub 2018 Dec 28.

本文引用的文献

1
Normal basilar artery structure and biaxial mechanical behaviour.正常基底动脉结构与双轴力学行为。
Comput Methods Biomech Biomed Engin. 2008 Oct;11(5):539-51. doi: 10.1080/10255840801949793.
3
Smooth muscle contraction: mechanochemical formulation for homogeneous finite strains.平滑肌收缩:均匀有限应变的机械化学公式
Prog Biophys Mol Biol. 2008 Jan-Apr;96(1-3):465-81. doi: 10.1016/j.pbiomolbio.2007.07.025. Epub 2007 Aug 11.
4
Surrounding tissues affect the passive mechanics of the vessel wall: theory and experiment.周围组织影响血管壁的被动力学特性:理论与实验
Am J Physiol Heart Circ Physiol. 2007 Dec;293(6):H3290-300. doi: 10.1152/ajpheart.00666.2007. Epub 2007 Sep 14.
8
Aorta in vivo parameter identification using an axial force constraint.利用轴向力约束进行主动脉体内参数识别。
Biomech Model Mechanobiol. 2005 Jun;3(4):191-9. doi: 10.1007/s10237-004-0057-4. Epub 2005 Mar 18.
9
Towards in vivo aorta material identification and stress estimation.迈向体内主动脉材料识别与应力估计
Biomech Model Mechanobiol. 2004 Mar;2(3):169-86. doi: 10.1007/s10237-003-0038-z. Epub 2004 Feb 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验