Suppr超能文献

平滑肌收缩:均匀有限应变的机械化学公式

Smooth muscle contraction: mechanochemical formulation for homogeneous finite strains.

作者信息

Stålhand J, Klarbring A, Holzapfel G A

机构信息

Department of Mechanical Engineering, Linköping Institute of Technology, Linköping, Sweden.

出版信息

Prog Biophys Mol Biol. 2008 Jan-Apr;96(1-3):465-81. doi: 10.1016/j.pbiomolbio.2007.07.025. Epub 2007 Aug 11.

Abstract

Chemical kinetics of smooth muscle contraction affect mechanical properties of organs that function under finite strains. In an effort to gain further insight into organ physiology, we formulate a mechanochemical finite strain model by considering the interaction between mechanical and biochemical components of cell function during activation. We propose a new constitutive framework and use a mechanochemical device that consists of two parallel elements: (i) spring for the cell stiffness; (ii) contractile element for the sarcomere. We use a multiplicative decomposition of cell elongation into filament contraction and cross-bridge deformation, and suggest that the free energy be a function of stretches, four variables (free unphosphorylated myosin, phosphorylated cross-bridges, phosphorylated and dephosphorylated cross-bridges attached to actin), chemical state variable driven by Ca2+-concentration, and temperature. The derived constitutive laws are thermodynamically consistent. Assuming isothermal conditions, we specialize the mechanical phase such that we recover the linear model of Yang et al. [2003a. The myogenic response in isolated rat cerebrovascular arteries: smooth muscle cell. Med. Eng. Phys. 25, 691-709]. The chemical phase is also specialized so that the linearized chemical evolution law leads to the four-state model of Hai and Murphy [1988. Cross-bridge phosphorylation and regulation of latch state in smooth muscle. Am. J. Physiol. 254, C99-C106]. One numerical example shows typical mechanochemical effects and the efficiency of the proposed approach. We discuss related parameter identification, and illustrate the dependence of muscle contraction (Ca2+-concentration) on active stress and related stretch. Mechanochemical models of this kind serve the mathematical basis for analyzing coupled processes such as the dependency of tissue properties on the chemical kinetics of smooth muscle.

摘要

平滑肌收缩的化学动力学影响在有限应变下发挥功能的器官的力学特性。为了更深入地了解器官生理学,我们通过考虑激活过程中细胞功能的机械和生化成分之间的相互作用,建立了一个机械化学有限应变模型。我们提出了一个新的本构框架,并使用一种由两个平行元件组成的机械化学装置:(i)用于细胞刚度的弹簧;(ii)用于肌节的收缩元件。我们将细胞伸长进行乘法分解为细丝收缩和横桥变形,并认为自由能是伸长、四个变量(游离未磷酸化肌球蛋白、磷酸化横桥、附着于肌动蛋白的磷酸化和去磷酸化横桥)、由Ca2+浓度驱动的化学状态变量以及温度的函数。推导得到的本构定律在热力学上是一致的。假设等温条件,我们对力学阶段进行特殊化处理,以便恢复Yang等人[2003a。离体大鼠脑血管平滑肌细胞的肌源性反应。医学工程与物理学。25,691 - 709]的线性模型。化学阶段也进行了特殊化处理,使得线性化的化学演化定律导致Hai和Murphy [1988。平滑肌横桥磷酸化与闩锁状态调节。美国生理学杂志。254,C99 - C106]的四态模型。一个数值例子展示了典型的机械化学效应以及所提出方法的有效性。我们讨论了相关的参数识别,并说明了肌肉收缩(Ca2+浓度)对主动应力和相关伸长的依赖性。这种机械化学模型为分析耦合过程提供了数学基础,例如组织特性对平滑肌化学动力学的依赖性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验