Kenny Glen P, Webb Paul, Ducharme Michel B, Reardon Francis D, Jay Ollie
Laboratory of Human Bioenergetics and Environmental Physiology, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada.
Med Sci Sports Exerc. 2008 Sep;40(9):1629-36. doi: 10.1249/MSS.0b013e31817751cb.
Previous studies have shown a rapid reduction in postexercise local sweating and blood flow despite elevated core temperatures. However, local heat loss responses do not illustrate how much whole-body heat dissipation is reduced, and core temperature measurements do not accurately represent the magnitude of residual body heat storage. Whole-body evaporative (H(E)) and dry (H(D)) heat loss as well as changes in body heat content (DeltaH(b)) were measured using simultaneous direct whole-body and indirect calorimetry.
Eight participants cycled for 60 min at an external work rate of 70 W followed by 60 min of recovery in a calorimeter at 30 degrees C and 30% relative humidity. Core temperature was measured in the esophagus (T(es)), rectum (T(re)), and aural canal (T(au)). Regional muscle temperature was measured in the vastus lateralis (T(vl)), triceps brachii (T(tb)), and upper trapezius (T(ut)).
After 60 min of exercise, average DeltaH(b) was +273 +/- 57 kJ, paralleled by increases in T(es), T(re), and T(au) of 0.84 +/- 0.49, 0.67 +/- 0.36, and 0.83 +/- 0.53 degrees C, respectively, and increases in T(vl), T(tb), and T(ut) of 2.43 +/- 0.60, 2.20 +/- 0.64, and 0.80 +/- 0.20 degrees C, respectively. After a 10-min recovery, metabolic heat production returned to pre-exercise levels, and H(E) was only 22.9 +/- 6.9% of the end-exercise value despite elevations in all core temperatures. After a 60-min recovery, DeltaH(b) was +129 +/- 58 kJ paralleled by elevations of T(es) = 0.19 +/- 0.13 degrees C, T(re) = 0.20 +/- 0.03 degrees C, T(au) = 0.18 +/- 0.04 degrees C, Tvl = 1.00 +/- 0.43 degrees C, T(tb) = 0.92 +/- 0.46 degrees C, and T(ut) = 0.31 +/- 0.27 degrees C. Despite this, H(E) returned to preexercise levels. Only minimal changes in H(D) occurred throughout.
We confirm a rapid reduction in postexercise whole-body heat dissipation by evaporation despite elevated core temperatures. Consequently, only 53% of the heat stored during 60 min of exercise was dissipated after 60 min of recovery, with the majority of residual heat stored in muscle tissue.
先前的研究表明,尽管核心体温升高,但运动后局部出汗和血流量会迅速减少。然而,局部热损失反应并未说明全身散热减少了多少,而核心体温测量也不能准确反映残余身体热量储存的程度。使用同步直接全身量热法和间接量热法测量全身蒸发散热(H(E))和干热散热(H(D))以及身体热量含量的变化(DeltaH(b))。
8名参与者以70W的外部工作率骑行60分钟,随后在30摄氏度、相对湿度30%的量热计中恢复60分钟。在食管(T(es))、直肠(T(re))和耳道(T(au))测量核心体温。在股外侧肌(T(vl))、肱三头肌(T(tb))和斜方肌上部(T(ut))测量局部肌肉温度。
运动60分钟后,平均DeltaH(b)为+273±57kJ,同时T(es)、T(re)和T(au)分别升高0.84±0.49、0.67±0.36和0.83±0.53摄氏度,T(vl)、T(tb)和T(ut)分别升高2.43±0.60、2.20±0.64和0.80±0.20摄氏度。恢复10分钟后,代谢产热恢复到运动前水平,尽管所有核心体温都升高,但H(E)仅为运动结束时值的22.9±6.9%。恢复60分钟后,DeltaH(b)为+129±58kJ,同时T(es)升高0.19±0.13摄氏度,T(re)升高0.20±0.03摄氏度,T(au)升高0.18±0.04摄氏度,Tvl升高1.00±0.43摄氏度,T(tb)升高0.92±0.46摄氏度,T(ut)升高0.31±0.27摄氏度。尽管如此,H(E)恢复到运动前水平。整个过程中H(D)仅发生了微小变化。
我们证实,尽管核心体温升高,但运动后全身蒸发散热会迅速减少。因此,运动60分钟后恢复60分钟,仅53%的运动期间储存的热量被消散,大部分残余热量储存在肌肉组织中。