Suppr超能文献

在两种寄生虫共存环境下曼氏血吸虫和钩虫单一感染的贝叶斯风险地图。

Bayesian risk maps for Schistosoma mansoni and hookworm mono-infections in a setting where both parasites co-exist.

作者信息

Raso Giovanna, Vounatsou Penelope, McManus Donald P, Utzinger Jürg

机构信息

Division of Epidemiology and Social Medicine, School of Population Health, The University of Queensland, Herston Road, Brisbane, QLD 4006, Australia.

出版信息

Geospat Health. 2007 Nov;2(1):85-96. doi: 10.4081/gh.2007.257.

Abstract

There is growing interest in the use of Bayesian geostatistical models for predicting the spatial distribution of parasitic infections, including hookworm, Schistosoma mansoni and co-infections with both parasites. The aim of this study was to predict the spatial distribution of mono-infections with either hookworm or S. mansoni in a setting where both parasites co-exist. School-based cross-sectional parasitological and questionnaire surveys were carried out in 57 rural schools in the Man region, western Côte d'Ivoire. A single stool specimen was obtained from each schoolchild attending grades 3-5. Stool specimens were processed by the Kato-Katz technique and an ether concentration method and examined for the presence of hookworm and S. mansoni eggs. The combined results from the two diagnostic approaches were considered for the infection status of each child. Demographic data (i.e. age and sex) were obtained from readily available school registries. Each child's socio-economic status was estimated, using the questionnaire data following a household-based asset approach. Environmental data were extracted from satellite imagery. The different data sources were incorporated into a geographical information system. Finally, a Bayesian spatial multinomial regression model was constructed and the spatial patterns of S. mansoni and hookworm mono-infections were investigated using Bayesian kriging. Our approach facilitated the production of smooth risk maps for hookworm and S. mansoni mono-infections that can be utilized for targeting control interventions. We argue that in settings where S. mansoni and hookworm co-exist and control efforts are under way, there is a need for both mono- and co-infection risk maps to enhance the cost-effectiveness of control programmes.

摘要

人们越来越关注使用贝叶斯地理统计模型来预测寄生虫感染的空间分布,包括钩虫、曼氏血吸虫以及这两种寄生虫的合并感染。本研究的目的是在两种寄生虫共存的环境中预测钩虫或曼氏血吸虫单一感染的空间分布。在科特迪瓦西部马恩地区的57所农村学校开展了基于学校的横断面寄生虫学和问卷调查。从每个三至五年级的学童中采集一份粪便样本。粪便样本采用加藤厚涂片法和乙醚浓缩法进行处理,并检查钩虫和曼氏血吸虫卵的存在情况。每种诊断方法的综合结果用于确定每个儿童的感染状况。人口统计学数据(即年龄和性别)从现有的学校登记册中获取。采用基于家庭资产的方法,利用问卷数据估算每个儿童的社会经济地位。环境数据从卫星图像中提取。不同的数据源被纳入地理信息系统。最后,构建了贝叶斯空间多项回归模型,并使用贝叶斯克里金法研究曼氏血吸虫和钩虫单一感染的空间模式。我们的方法有助于生成钩虫和曼氏血吸虫单一感染的平滑风险地图,可用于确定控制干预措施的目标。我们认为,在曼氏血吸虫和钩虫共存且正在开展控制工作的环境中,需要单一感染和合并感染风险地图,以提高控制项目的成本效益。

相似文献

引用本文的文献

7
Earth Observation, Spatial Data Quality, and Neglected Tropical Diseases.地球观测、空间数据质量与被忽视的热带病
PLoS Negl Trop Dis. 2015 Dec 17;9(12):e0004164. doi: 10.1371/journal.pntd.0004164. eCollection 2015 Dec.

本文引用的文献

4
Bridges to sustainable tropical health.通往可持续热带健康的桥梁。
Proc Natl Acad Sci U S A. 2007 Oct 9;104(41):16038-43. doi: 10.1073/pnas.0700900104. Epub 2007 Oct 3.
6
Control of neglected tropical diseases.被忽视热带病的防控
N Engl J Med. 2007 Sep 6;357(10):1018-27. doi: 10.1056/NEJMra064142.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验