Suppr超能文献

利用遥感数字高程模型对科特迪瓦西部曼氏血吸虫感染进行贝叶斯空间风险预测。

Bayesian spatial risk prediction of Schistosoma mansoni infection in western Côte d'Ivoire using a remotely-sensed digital elevation model.

作者信息

Beck-Wörner Christian, Raso Giovanna, Vounatsou Penelope, N'Goran Eliézer K, Rigo Gergely, Parlow Eberhard, Utzinger Jürg

机构信息

Department of Public Health and Epidemiology, Swiss Tropical Institute, Basel, Switzerland.

出版信息

Am J Trop Med Hyg. 2007 May;76(5):956-63.

Abstract

An important epidemiologic feature of schistosomiasis is the focal distribution of the disease. Thus, the identification of high-risk communities is an essential first step for targeting interventions in an efficient and cost-effective manner. We used a remotely-sensed digital elevation model (DEM), derived hydrologic features (i.e., stream order, and catchment area), and fitted Bayesian geostatistical models to assess associations between environmental factors and infection with Schistosoma mansoni among more than 4,000 school children from the region of Man in western Côte d'Ivoire. At the unit of the school, we found significant correlations between the infection prevalence of S. mansoni and stream order of the nearest river, water catchment area, and altitude. In conclusion, the use of a freely available 90 m high-resolution DEM, geographic information system applications, and Bayesian spatial modeling facilitates risk prediction for S. mansoni, and is a powerful approach for risk profiling of other neglected tropical diseases that are pervasive in the developing world.

摘要

血吸虫病的一个重要流行病学特征是该疾病的局灶性分布。因此,识别高危社区是以高效且具成本效益的方式确定干预目标的关键第一步。我们使用了遥感数字高程模型(DEM)、派生的水文特征(即河流等级和集水面积),并拟合贝叶斯地理统计模型,以评估环境因素与来自科特迪瓦西部曼地区4000多名学童曼氏血吸虫感染之间的关联。在学校层面,我们发现曼氏血吸虫感染率与最近河流的河流等级、集水面积和海拔之间存在显著相关性。总之,使用免费的90米高分辨率DEM、地理信息系统应用程序和贝叶斯空间建模有助于对曼氏血吸虫进行风险预测,并且是对在发展中世界普遍存在的其他被忽视热带病进行风险评估的有力方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验