Suppr超能文献

论磁共振波谱中谱分辨率对体素大小和磁场强度的依赖性

On the voxel size and magnetic field strength dependence of spectral resolution in magnetic resonance spectroscopy.

作者信息

Fleysher Roman, Fleysher Lazar, Liu Songtao, Gonen Oded

机构信息

Department of Radiology, New York University School of Medicine, New York, NY 10016, USA.

出版信息

Magn Reson Imaging. 2009 Feb;27(2):222-32. doi: 10.1016/j.mri.2008.06.009. Epub 2008 Aug 6.

Abstract

While the inherent low sensitivity of in vivo MR spectroscopy motivated a trend towards higher magnetic fields, B(0), it has since become apparent that this increase does not seem to translate into the anticipated improvement in spectral resolution. This is attributed to the decrease of the transverse relaxation time, T(2)*, in vivo due to macro- and mesoscopic tissue susceptibility. Using spectral contrast-to-noise ratio (SCNR) arguments, we show that if in biological systems the linewidth (on the frequency scale) increases linearly with the field, the spectral resolution (in parts per million) improves approximately as the fifth-root of B(0) for chemically shifted lines and decreases as about B(0)(4/5) (in hertz) for a structure of J-coupled multiplets. It is also shown that for any given B(0) there is a unique voxel size that is optimal in spectral resolution, linking the spectral and spatial resolutions. Since in practical applications the spatial resolution may be dictated by the target anatomy, nomograms to determine the B(0) required to achieve the desired spectral resolution at that voxel size are presented. More generally, the scaling of the nomograms to determine the achievable spectral and spatial resolutions at any given field is described.

摘要

虽然体内磁共振波谱固有的低灵敏度促使人们倾向于采用更高的磁场强度B(0),但后来发现这种增加似乎并未转化为预期的光谱分辨率提高。这归因于体内由于宏观和介观组织敏感性导致的横向弛豫时间T(2)*缩短。利用光谱对比度噪声比(SCNR)的观点,我们表明,如果在生物系统中谱线宽度(在频率尺度上)随磁场线性增加,对于化学位移谱线,光谱分辨率(以百万分之一计)大约随B(0)的五次方根提高,而对于J耦合多重峰结构,光谱分辨率(以赫兹计)大约随B(0)(4/5)降低。还表明,对于任何给定的B(0),存在一个在光谱分辨率方面最优的独特体素大小,将光谱分辨率和空间分辨率联系起来。由于在实际应用中空间分辨率可能由目标解剖结构决定,本文给出了用于确定在该体素大小下实现所需光谱分辨率所需的B(0)的列线图。更一般地,描述了用于确定在任何给定磁场下可实现的光谱分辨率和空间分辨率的列线图的缩放。

相似文献

1
On the voxel size and magnetic field strength dependence of spectral resolution in magnetic resonance spectroscopy.
Magn Reson Imaging. 2009 Feb;27(2):222-32. doi: 10.1016/j.mri.2008.06.009. Epub 2008 Aug 6.
5
High-resolution mapping of human brain metabolites by free induction decay (1)H MRSI at 7 T.
NMR Biomed. 2012 Jun;25(6):873-82. doi: 10.1002/nbm.1805. Epub 2011 Dec 22.
6
Tailored spiral in-out spectral-spatial water suppression pulses for magnetic resonance spectroscopic imaging.
Magn Reson Med. 2018 Jan;79(1):31-40. doi: 10.1002/mrm.26683. Epub 2017 Mar 31.
7
Improved reconstruction for MR spectroscopic imaging.
IEEE Trans Med Imaging. 2007 May;26(5):686-95. doi: 10.1109/TMI.2007.895482.
8
9
Clinical applications at ultrahigh field (7  T). Where does it make the difference?
NMR Biomed. 2016 Sep;29(9):1316-34. doi: 10.1002/nbm.3272. Epub 2015 Mar 12.
10
3.0-T functional brain imaging: a 5-year experience.
Radiol Med. 2007 Feb;112(1):97-112. doi: 10.1007/s11547-007-0124-x. Epub 2007 Feb 22.

引用本文的文献

2
GABA, Glutamate and Neural Activity: A Systematic Review With Meta-Analysis of Multimodal H-MRS-fMRI Studies.
Front Psychiatry. 2021 Mar 8;12:644315. doi: 10.3389/fpsyt.2021.644315. eCollection 2021.
3
General technical remarks on HMRS translational research in 7T.
Pol J Radiol. 2019 Apr 12;84:e190-e197. doi: 10.5114/pjr.2019.85147. eCollection 2019.
4
Image superresolution reconstruction via granular computing clustering.
Comput Intell Neurosci. 2014;2014:219636. doi: 10.1155/2014/219636. Epub 2014 Dec 28.
5
Role of very high order and degree B0 shimming for spectroscopic imaging of the human brain at 7 tesla.
Magn Reson Med. 2012 Oct;68(4):1007-17. doi: 10.1002/mrm.24122. Epub 2011 Dec 28.

本文引用的文献

1
Methodology of H NMR Spectroscopy of the Human Brain at Very High Magnetic Fields.
Appl Magn Reson. 2005 Mar;29(1):139-157. doi: 10.1007/BF03166960.
2
Magnetic field and tissue dependencies of human brain longitudinal 1H2O relaxation in vivo.
Magn Reson Med. 2007 Feb;57(2):308-18. doi: 10.1002/mrm.21122.
4
An introduction to coil array design for parallel MRI.
NMR Biomed. 2006 May;19(3):300-15. doi: 10.1002/nbm.1046.
7
Imaging iron stores in the brain using magnetic resonance imaging.
Magn Reson Imaging. 2005 Jan;23(1):1-25. doi: 10.1016/j.mri.2004.10.001.
10
Ultrahigh field magnetic resonance imaging and spectroscopy.
Magn Reson Imaging. 2003 Dec;21(10):1263-81. doi: 10.1016/j.mri.2003.08.027.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验