Joshi Preeti, Carrington Elizabeth A, Wang Liangjun, Ketel Carrie S, Miller Ellen L, Jones Richard S, Simon Jeffrey A
Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minneapolis 55455.
Department of Biological Sciences, Southern Methodist University, Dallas, Texas 75275.
J Biol Chem. 2008 Oct 10;283(41):27757-27766. doi: 10.1074/jbc.M804442200. Epub 2008 Aug 8.
Polycomb gene silencing requires histone methyltransferase activity of Polycomb repressive complex 2 (PRC2), which methylates lysine 27 of histone H3. Information on how PRC2 works is limited by lack of structural data on the catalytic subunit, Enhancer of zeste (E(Z)), and the paucity of E(z) mutant alleles that alter its SET domain. Here we analyze missense alleles of Drosophila E(z), selected for molecular study because of their dominant genetic effects. Four missense alleles identify key E(Z) SET domain residues, and a fifth is located in the adjacent CXC domain. Analysis of mutant PRC2 complexes in vitro, and H3-K27 methylation in vivo, shows that each SET domain mutation disrupts PRC2 histone methyltransferase. Based on known SET domain structures, the mutations likely affect either the lysine-substrate binding pocket, the binding site for the adenosylmethionine methyl donor, or a critical tyrosine predicted to interact with the substrate lysine epsilon-amino group. In contrast, the CXC mutant retains catalytic activity, Lys-27 specificity, and trimethylation capacity. Deletion analysis also reveals a functional requirement for a conserved E(Z) domain N-terminal to CXC and SET. These results identify critical SET domain residues needed for PRC2 enzyme function, and they also emphasize functional inputs from outside the SET domain.
多梳基因沉默需要多梳抑制复合物2(PRC2)的组蛋白甲基转移酶活性,该复合物可使组蛋白H3的赖氨酸27甲基化。由于缺乏催化亚基zeste增强子(E(Z))的结构数据以及改变其SET结构域的E(z)突变等位基因数量稀少,关于PRC2如何发挥作用的信息有限。在这里,我们分析了果蝇E(z)的错义等位基因,因其显性遗传效应而被选用于分子研究。四个错义等位基因确定了E(Z) SET结构域的关键残基,第五个位于相邻的CXC结构域。对体外突变的PRC2复合物和体内H3-K27甲基化的分析表明,每个SET结构域突变都会破坏PRC2组蛋白甲基转移酶。基于已知的SET结构域结构,这些突变可能影响赖氨酸底物结合口袋、腺苷甲硫氨酸甲基供体的结合位点,或预测与底物赖氨酸ε-氨基相互作用的关键酪氨酸。相比之下,CXC突变体保留了催化活性、赖氨酸27特异性和三甲基化能力。缺失分析还揭示了CXC和SET结构域N端保守的E(Z)结构域的功能需求。这些结果确定了PRC2酶功能所需的关键SET结构域残基,同时也强调了SET结构域之外的功能输入。