Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455.
Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455.
Genetics. 2018 Mar;208(3):1023-1036. doi: 10.1534/genetics.117.300585. Epub 2017 Dec 14.
Polycomb repressive complex 2 (PRC2) is a conserved chromatin-modifying enzyme that methylates histone H3 on lysine-27 (K27). PRC2 can add one, two, or three methyl groups and the fully methylated product, H3-K27me3, is a hallmark of Polycomb-silenced chromatin. Less is known about functions of K27me1 and K27me2 and the dynamics of flux through these states. These modifications could serve mainly as intermediates to produce K27me3 or they could each convey distinct epigenetic information. To investigate this, we engineered a variant of PRC2 which is converted into a monomethyltransferase. A single substitution, F738Y, in the lysine-substrate binding pocket of the catalytic subunit, E(Z), creates an enzyme that retains robust K27 monomethylation but dramatically reduced di- and trimethylation. Overexpression of E(Z)-F738Y in fly cells triggers desilencing of Polycomb target genes significantly more than comparable overexpression of catalytically deficient E(Z), suggesting that H3-K27me1 contributes positively to gene activity. Consistent with this, normal genomic distribution of H3-K27me1 is enriched on actively transcribed genes, with localization overlapping the active H3-K36me2/3 chromatin marks. Thus, distinct K27 methylation states link to either repression or activation depending upon the number of added methyl groups. If so, then H3-K27me1 deposition may involve alternative methyltransferases beyond PRC2, which is primarily repressive. Indeed, assays on fly embryos with PRC2 genetically inactivated, and on fly cells with PRC2 chemically inhibited, show that substantial H3-K27me1 accumulates independently of PRC2. These findings imply distinct roles for K27me1 K27me3 in transcriptional control and an expanded machinery for methylating H3-K27.
多梳抑制复合物 2(PRC2)是一种保守的染色质修饰酶,可在赖氨酸 27(K27)处甲基化组蛋白 H3。PRC2 可以添加一个、两个或三个甲基,完全甲基化产物 H3-K27me3 是多梳沉默染色质的标志。关于 K27me1 和 K27me2 的功能以及这些状态的通量动态知之甚少。这些修饰可能主要作为产生 K27me3 的中间体,或者它们各自可以传递不同的表观遗传信息。为了研究这一点,我们设计了一种 PRC2 的变体,它转化为单甲基转移酶。催化亚基 E(Z)的赖氨酸底物结合口袋中的单个取代 F738Y,产生一种酶,该酶保留了强大的 K27 单甲基化,但大大降低了二甲基化和三甲基化。在果蝇细胞中过度表达 E(Z)-F738Y 会显著触发多梳靶基因的去沉默,比催化缺陷型 E(Z)的过度表达更显著,这表明 H3-K27me1 对基因活性有积极贡献。与之一致的是,H3-K27me1 的正常基因组分布在活跃转录的基因上富集,与活跃的 H3-K36me2/3 染色质标记重叠。因此,不同的 K27 甲基化状态根据添加的甲基基团数量与抑制或激活相关。如果是这样,那么 H3-K27me1 的沉积可能涉及除主要是抑制性的 PRC2 之外的其他甲基转移酶。事实上,在 PRC2 基因失活的果蝇胚胎和 PRC2 化学抑制的果蝇细胞上进行的测定表明,大量的 H3-K27me1 积累不依赖于 PRC2。这些发现意味着 K27me1 和 K27me3 在转录控制中的作用不同,以及用于甲基化 H3-K27 的扩展机制。