Tallury Padmavathy, Payton Keith, Santra Swadeshmukul
Nanoscience Technology Center, University of Central Florida, Orlando, FL 32826, USA.
Nanomedicine (Lond). 2008 Aug;3(4):579-92. doi: 10.2217/17435889.3.4.579.
In the last decade, the field of nanoparticle (NP) technology has attracted immense interest in bioimaging and biosensing research. This technology has demonstrated its capability in obtaining sensitive data in a noninvasive manner, promising a breakthrough in early-stage cancer diagnosis, stem cell tracking, drug delivery, pathogen detection and gene delivery in the near future. However, successful and wide application of this technology relies greatly on robust NP engineering and synthesis methodologies. The NP development steps involve design, synthesis, surface modification and bioconjugation. Each of these steps is critical in determining the overall performance of NPs. It is desirable to obtain NPs that are highly sensitive, stable, imageable, biocompatible and targetable. It is also desirable to obtain multimodal/multifunctional NPs that will enable imaging/sensing of the target using multiple imaging/sensing modalities. In this review, we focus on silica NPs that have been developed for biosensing applications and silica-based multimodal/multifunctional NPs for bioimaging applications.
在过去十年中,纳米颗粒(NP)技术领域在生物成像和生物传感研究方面引起了极大的关注。该技术已展示出以非侵入性方式获取敏感数据的能力,有望在不久的将来在早期癌症诊断、干细胞追踪、药物递送、病原体检测和基因递送方面取得突破。然而,这项技术的成功广泛应用在很大程度上依赖于强大的纳米颗粒工程和合成方法。纳米颗粒的开发步骤包括设计、合成、表面修饰和生物偶联。这些步骤中的每一个对于确定纳米颗粒的整体性能都至关重要。期望获得高度敏感、稳定、可成像、生物相容且可靶向的纳米颗粒。还期望获得多模态/多功能纳米颗粒,其能够使用多种成像/传感方式对目标进行成像/传感。在这篇综述中,我们重点关注已开发用于生物传感应用的二氧化硅纳米颗粒以及用于生物成像应用的基于二氧化硅的多模态/多功能纳米颗粒。
Nanomedicine (Lond). 2008-8
Langmuir. 2010-7-20
Acc Chem Res. 2011-6-7
Nanotechnology. 2013-10-10
Acc Chem Res. 2014-1-7
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2012-8-9
Acc Chem Res. 2011-8-17
Drug Discov Today. 2012-7-6
Int J Nanomedicine. 2025-3-3
IET Nanobiotechnol. 2021-4
ACS Appl Mater Interfaces. 2021-10-27