Suppr超能文献

[Artificial ribonucleases: quantitative analysis of the structure-activity relationship and new insight into the strategy of design of highly efficient RNase mimetics].

作者信息

Koroleva L S, Kuz'min V E, Muratov E N, Artemenko A G, Sil'nikov V N

出版信息

Bioorg Khim. 2008 Jul-Aug;34(4):495-505. doi: 10.1134/s1068162008040080.

Abstract

The dependence of hydrolytic activity of artificial ribonucleases toward an HIV-I RNA fragment, a 21-mer oligonucleotide, and tRNA Asp on the structure of the RNase mimetic was analyzed. The quantitative structure-activity relationship (QSAR task) was determined by the method of simplex representation of the molecular structure where the amounts of four-atom fragments (simplexes) of fixed structure, symmetry, and chirality served as descriptors. Not only the types of atoms participating in simplexes but also their physicochemical properties (e.g., partial charges, lipophilicities, etc.) were taken into account. This allowed the estimation of the relative role of various factors affecting the interaction of molecules under study with the corresponding biological target. The 2D QSAR models obtained by the method of projection to latent structures have quite satisfactory statistical indices (R2 = 0.82-0.96; Q2 = 0.73-0.89), which help predict the activities of new compounds. The electrostatic properties of ribonuclease atoms were shown to contribute significantly to the manifestation of the hydrolytic activity of ribonucleases in the case of the 21-mer oligonucleotide and tRNA. In addition, the structural fragments that most greatly contribute to the alteration of the hydrolytic activity of RNases were identified. The models obtained were used for the virtual screening and molecular design of new highly efficient RNase mimetics.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验