Suppr超能文献

Proteomic analysis of mononuclear cells of patients with minimal-change nephrotic syndrome of childhood.

作者信息

González Elsa, Neuhaus Thomas, Kemper Markus J, Girardin Eric

机构信息

Department of Pediatrics, Pediatric Nephrology Unit, Children's Hospital, Geneva, Switzerland.

出版信息

Nephrol Dial Transplant. 2009 Jan;24(1):149-55. doi: 10.1093/ndt/gfn459. Epub 2008 Aug 12.

Abstract

UNLABELLED

Background/Aims. Recently, peripheral blood mononuclear cell transcriptome analysis has identified genes that are upregulated in relapsing minimal-change nephrotic syndrome (MCNS). In order to investigate protein expression in peripheral blood mononuclear cells (PBMC) from relapsing MCNS patients, we performed proteomic comparisons of PBMC from patients with MCNS in relapse and controls.

METHODS

PBMC from a total of 20 patients were analysed. PBMC were taken from five patients with relapsing MCNS, four in remission, five patients with other glomerular diseases and six controls. Two dimensional electrophoresis was performed and proteome patterns were compared.

RESULTS

Automatic heuristic clustering analysis allowed us to pool correctly the gels from the MCNS patients in the relapse and in the control groups. Using hierarchical population matching, nine spots were found to be increased in PBMC from MCNS patients in relapse. Four spots were identified by mass spectrometry. Three of the four proteins identified (L-plastin, alpha-tropomyosin and annexin III) were cytoskeletal-associated proteins. Using western blot and immunochemistry, L-plastin and alpha-tropomyosin 3 concentrations were found to be enhanced in PBMC from MCNS patients in relapse. Conclusions. These data indicate that a specific proteomic profile characterizes PBMC from MCNS patients in relapse. Proteins involved in PBMC cytoskeletal rearrangement are increased in relapsing MCNS. We hypothesize that T-cell cytoskeletal rearrangement may play a role in the pathogenesis of MCNS by altering the expression of cell surface receptors and by modifying the interaction of these cells with glomerular cells.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验