Suppr超能文献

作为小干扰RNA载体的人工微小RNA:与短发夹RNA相比,在体外和体内均具有更高的安全性。

Artificial microRNAs as siRNA shuttles: improved safety as compared to shRNAs in vitro and in vivo.

作者信息

Boudreau Ryan L, Martins Inês, Davidson Beverly L

机构信息

Department of Internal Medicine, University of Iowa, Iowa City, Iowa 52240, USA.

出版信息

Mol Ther. 2009 Jan;17(1):169-75. doi: 10.1038/mt.2008.231. Epub 2008 Nov 11.

Abstract

RNA interference (RNAi) provides a promising therapeutic approach to human diseases. However, data from recent reports demonstrate that short-hairpin RNAs (shRNAs) may cause cellular toxicity, and this warrants further investigation of the safety of using RNAi vectors. Earlier, in comparing hairpin-based RNAi vectors, we noted that shRNAs are highly expressed and yield an abundance of unprocessed precursors, whereas artificial microRNAs (miRNAs) are expressed at lower levels and are processed efficiently. We hypothesized that unprocessed shRNAs arise from the saturation of endogenous RNAi machinery, which poses likely a burden to cells. In this study, we tested that hypothesis by assessing the relative effects of shRNAs and artificial miRNAs on the processing and function of miRNAs. In competition assays, shRNAs disrupted miRNA biogenesis and function, whereas artificial miRNAs avoided this interference even when dosed to silence as effectively as shRNAs. We next compared the safety of these vectors in mouse cerebella, and found that shRNAs cause Purkinje cell neurotoxicity. By contrast, artificial miRNA expression was well tolerated, resulting in effective target gene silencing in Purkinje cells. These findings, together with data from earlier work in mouse striata, suggest that miRNA-based platforms are better suited for therapeutic silencing in the mammalian brain.

摘要

RNA干扰(RNAi)为人类疾病提供了一种很有前景的治疗方法。然而,近期报告的数据表明,短发夹RNA(shRNA)可能会导致细胞毒性,这就需要对使用RNAi载体的安全性进行进一步研究。早些时候,在比较基于发夹的RNAi载体时,我们注意到shRNA高度表达并产生大量未加工的前体,而人工微小RNA(miRNA)表达水平较低且加工效率高。我们推测未加工的shRNA源于内源性RNAi机制的饱和,这可能给细胞带来负担。在本研究中,我们通过评估shRNA和人工miRNA对miRNA加工和功能的相对影响来验证这一假设。在竞争试验中,shRNA破坏了miRNA的生物合成和功能,而人工miRNA即使在剂量与shRNA一样有效地沉默时也能避免这种干扰。接下来,我们比较了这些载体在小鼠小脑中的安全性,发现shRNA会导致浦肯野细胞神经毒性。相比之下,人工miRNA表达耐受性良好,能在浦肯野细胞中有效沉默靶基因。这些发现,连同早期在小鼠纹状体中的研究数据,表明基于miRNA的平台更适合在哺乳动物大脑中进行治疗性沉默。

相似文献

5
Artificial miRNAs as therapeutic tools: Challenges and opportunities.人工 miRNA 作为治疗工具:挑战与机遇。
Wiley Interdiscip Rev RNA. 2021 Jul;12(4):e1640. doi: 10.1002/wrna.1640. Epub 2021 Jan 1.

引用本文的文献

4
Current trends in gene therapy to treat inherited disorders of the brain.治疗遗传性脑部疾病的基因治疗当前趋势。
Mol Ther. 2025 May 7;33(5):1988-2014. doi: 10.1016/j.ymthe.2025.03.057. Epub 2025 Apr 2.
7
Engineering strategies to safely drive CAR T-cells into the future.工程化策略助力 CAR T 细胞安全迈入未来。
Front Immunol. 2024 Jun 19;15:1411393. doi: 10.3389/fimmu.2024.1411393. eCollection 2024.
10
NADPH Oxidase 3: Beyond the Inner Ear.NADPH氧化酶3:内耳之外
Antioxidants (Basel). 2024 Feb 8;13(2):219. doi: 10.3390/antiox13020219.

本文引用的文献

5
Muscle-specific microRNA miR-206 promotes muscle differentiation.肌肉特异性微小RNA miR-206促进肌肉分化。
J Cell Biol. 2006 Aug 28;174(5):677-87. doi: 10.1083/jcb.200603008. Epub 2006 Aug 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验