Kema Gert H J, van der Lee Theo A J, Mendes Odette, Verstappen Els C P, Lankhorst René Klein, Sandbrink Hans, van der Burgt Ate, Zwiers Lute-Harm, Csukai Michael, Waalwijk Cees
Plant Research International B.V., Wageningen, The Netherlands.
Mol Plant Microbe Interact. 2008 Sep;21(9):1249-60. doi: 10.1094/MPMI-21-9-1249.
The foliar disease septoria tritici blotch, caused by the fungus Mycosphaerella graminicola, is currently the most important wheat disease in Europe. Gene expression was examined under highly different conditions, using 10 expressed sequence tag libraries generated from M. graminicola isolate IPO323 using seven in vitro and three in planta growth conditions. To identify fungal clones in the interaction libraries, we developed a selection method based on hybridization with the entire genomic DNA of M. graminicola, to selectively enrich these libraries for fungal genes. Assembly of the 27,007 expressed sequence tags resulted in 9,190 unigenes, representing 5.2 Mb of the estimated 39-Mb genome size of M. graminicola. All libraries contributed significantly to the number of unigenes, especially the in planta libraries representing different stages of pathogenesis, which covered 15% of the library-specific unigenes. Even under presymptomatic conditions (5 days postinoculation), when fungal biomass is less than 5%, this method enabled us to efficiently capture fungal genes expressed during pathogenesis. Many of these genes were uniquely expressed in planta, indicating that in planta gene expression significantly differed from in vitro expression. Examples of gene discovery included a number of cell wall-degrading enzymes, a broad set of genes involved in signal transduction (n=11) and a range of ATP-binding cassette (n=20) and major facilitator superfamily transporter genes (n=12) potentially involved in protection against antifungal compounds or the secretion of pathogenicity factors. In addition, evidence is provided for a mycovirus in M. graminicola that is highly expressed under various stress conditions, in particular, under nitrogen starvation. Our analyses provide a unique window on in vitro and in planta gene expression of M. graminicola.
由真菌小麦壳针孢(Mycosphaerella graminicola)引起的叶部病害小麦壳针孢叶斑病,是目前欧洲最重要的小麦病害。利用从壳针孢分离株IPO323在7种体外和3种体内生长条件下构建的10个表达序列标签文库,在高度不同的条件下检测了基因表达。为了在相互作用文库中鉴定真菌克隆,我们开发了一种基于与壳针孢全基因组DNA杂交的筛选方法,以选择性地富集这些文库中的真菌基因。对27,007个表达序列标签进行组装,得到9,190个单基因,代表了壳针孢估计39 Mb基因组大小中的5.2 Mb。所有文库对单基因数量都有显著贡献,尤其是代表发病机制不同阶段的体内文库,其涵盖了文库特异性单基因的15%。即使在症状出现前的条件下(接种后5天),当真菌生物量小于5%时,该方法也能使我们有效地捕获发病过程中表达的真菌基因。这些基因中有许多在植物体内特异性表达,表明植物体内的基因表达与体外表达有显著差异。基因发现的例子包括一些细胞壁降解酶、一系列参与信号转导的基因(n = 11)以及一系列可能参与抗真菌化合物防护或致病因子分泌的ATP结合盒基因(n = 20)和主要易化子超家族转运蛋白基因(n = 12)。此外,还提供了证据表明壳针孢中存在一种真菌病毒,该病毒在各种胁迫条件下,特别是在氮饥饿条件下高度表达。我们的分析为壳针孢的体外和植物体内基因表达提供了一个独特的窗口。