Duchowicz Pablo R, Talevi Alan, Bruno-Blanch Luis E, Castro Eduardo A
Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas INIFTA (UNLP, CCT La Plata-CONICET), Diag. 113 y 64, C.C. 16, Suc.4, La Plata 1900, Argentina.
Bioorg Med Chem. 2008 Sep 1;16(17):7944-55. doi: 10.1016/j.bmc.2008.07.067. Epub 2008 Jul 29.
Solubility has become one of the key physicochemical screens at early stages of the drug development process. Solubility prediction through Quantitative Structure-Property Relationships (QSPR) modeling is a growing area of modern pharmaceutical research, being compatible with both High Throughput Screening technologies and limited compound availability characteristic of early stages of drug development. We resort to the QSPR theory for analyzing the aqueous solubility exhibited by 145 diverse drug-like organic compounds (0.781 being the average Tanimoto distances between all possible pairs of compounds in the training set). An accurate and generally applicable model is derived, consisting on a linear regression equation that involves three DRAGON molecular descriptors selected from more than a thousand available. Alternatively, we apply the linear QSPR to other 21 commonly employed validation compounds, leading to solubility estimations that compare fairly well with the performance achieved by previously reported Group Contribution Methods.
溶解度已成为药物研发过程早期阶段关键的物理化学筛选指标之一。通过定量结构-性质关系(QSPR)建模进行溶解度预测是现代药物研究中一个不断发展的领域,它与高通量筛选技术以及药物研发早期阶段化合物可得性有限的特点相兼容。我们借助QSPR理论来分析145种不同的类药物有机化合物的水溶性(训练集中所有可能化合物对之间的平均Tanimoto距离为0.781)。由此得出了一个准确且普遍适用的模型,该模型由一个线性回归方程组成,该方程涉及从一千多个可用的DRAGON分子描述符中选出的三个描述符。另外,我们将线性QSPR应用于其他21种常用的验证化合物,所得溶解度估计值与先前报道的基团贡献法所取得的结果相当。