Suppr超能文献

癌症治疗中使用的多种磺胺类化合物的预测建模与回归分析

Predictive modeling and regression analysis of diverse sulfonamide compounds employed in cancer therapy.

作者信息

Danish Muhammad, Liaquat Tehreem, Ashraf Farwa, Zaman Shahid

机构信息

Department of Chemistry, University of Sialkot, Sialkot, Pakistan.

Department of Mathematics, University of Sialkot, Sialkot, Pakistan.

出版信息

Front Chem. 2024 May 27;12:1413850. doi: 10.3389/fchem.2024.1413850. eCollection 2024.

Abstract

Topological indices (TIs) have rich applications in various biological contexts, particularly in therapeutic strategies for cancer. Predicting the performance of compounds in the treatment of cancer is one such application, wherein TIs offer insights into the molecular structures and related properties of compounds. By examining, various compounds exhibit different degree-based TIs, analysts can pinpoint the treatments that are most efficient for specific types of cancer. This paper specifically delves into the topological indices (TIs) implementations in forecasting the biological and physical attributes of innovative compounds utilized in addressing cancer through therapeutic interventions. The analysis being conducted to derivatives of sulfonamides, namely, 4-[(2,4-dichlorophenylsulfonamido)methyl]cyclohexanecarboxylic acid (1), ethyl 4-[(naphthalene-2-sulfonamido)methyl]cyclohexanecarboxylate (2), ethyl 4-[(2,5-dichlorophenylsulfonamido)methyl]cyclohexanecarboxylate (3), 4-[(naphthalene-2-sulfonamido)methyl]cyclohexane-1-carboxylic acid (4) and (2S)-3-methyl-2-(naphthalene-1-sulfonamido)-butanoic acid (5), is performed by utilizing edge partitioning for the computation of degree-based graph descriptors. Subsequently, a linear regression-based model is established to forecast characteristics, like, melting point and formula weight in a quantitative structure-property relationship. The outcomes emphasize the effectiveness or capability of topological indices as a valuable asset for inventing and creating of compounds within the realm of cancer therapy.

摘要

拓扑指数(TIs)在各种生物学背景中有着丰富的应用,尤其是在癌症治疗策略方面。预测化合物在癌症治疗中的性能就是这样一种应用,其中拓扑指数能深入了解化合物的分子结构和相关性质。通过研究,各种化合物表现出不同的基于度的拓扑指数,分析人员可以确定对特定类型癌症最有效的治疗方法。本文具体探讨了拓扑指数(TIs)在预测通过治疗干预来治疗癌症所使用的新型化合物的生物学和物理属性方面的应用。所进行的分析针对的是磺胺类衍生物,即4-[(2,4-二氯苯基磺酰胺基)甲基]环己烷羧酸(1)、4-[(萘-2-磺酰胺基)甲基]环己烷羧酸乙酯(2)、4-[(2,5-二氯苯基磺酰胺基)甲基]环己烷羧酸乙酯(3)、4-[(萘-2-磺酰胺基)甲基]环己烷-1-羧酸(4)和(2S)-3-甲基-2-(萘-1-磺酰胺基)丁酸(5),通过利用边划分来计算基于度的图描述符。随后,建立了一个基于线性回归的模型来预测诸如熔点和式量等特性,以建立定量结构-性质关系。结果强调了拓扑指数作为癌症治疗领域中发明和创造化合物的宝贵资产的有效性或能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48ba/11163099/837fcb30b487/fchem-12-1413850-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验