Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA 95064, United States; Department of Computer Science, University of California Santa Cruz, Santa Cruz, CA 95064, United States.
Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA 95064, United States.
Prog Nucl Magn Reson Spectrosc. 2018 Jun-Aug;106-107:1-25. doi: 10.1016/j.pnmrs.2018.03.002. Epub 2018 Mar 11.
Chemical shifts are highly sensitive probes harnessed by NMR spectroscopists and structural biologists as conformational parameters to characterize a range of biological molecules. Traditionally, assignment of chemical shifts has been a labor-intensive process requiring numerous samples and a suite of multidimensional experiments. Over the past two decades, the development of complementary computational approaches has bolstered the analysis, interpretation and utilization of chemical shifts for elucidation of high resolution protein and nucleic acid structures. Here, we review the development and application of chemical shift-based methods for structure determination with a focus on ab initio fragment assembly, comparative modeling, oligomeric systems, and automated assignment methods. Throughout our discussion, we point out practical uses, as well as advantages and caveats, of using chemical shifts in structure modeling. We additionally highlight (i) hybrid methods that employ chemical shifts with other types of NMR restraints (residual dipolar couplings, paramagnetic relaxation enhancements and pseudocontact shifts) that allow for improved accuracy and resolution of generated 3D structures, (ii) the utilization of chemical shifts to model the structures of sparsely populated excited states, and (iii) modeling of sidechain conformations. Finally, we briefly discuss the advantages of contemporary methods that employ sparse NMR data recorded using site-specific isotope labeling schemes for chemical shift-driven structure determination of larger molecules. With this review, we aim to emphasize the accessibility and versatility of chemical shifts for structure determination of challenging biological systems, and to point out emerging areas of development that lead us towards the next generation of tools.
化学位移是高度灵敏的探针,被 NMR 光谱学家和结构生物学家用作构象参数,用于表征一系列生物分子。传统上,化学位移的分配是一个劳动密集型的过程,需要大量的样品和一系列多维实验。在过去的二十年中,互补计算方法的发展增强了化学位移的分析、解释和利用,以阐明高分辨率的蛋白质和核酸结构。在这里,我们回顾了基于化学位移的结构测定方法的发展和应用,重点介绍了从头碎片组装、比较建模、寡聚体系和自动分配方法。在我们的讨论中,我们指出了在结构建模中使用化学位移的实际用途,以及优点和注意事项。我们还强调了(i)使用化学位移与其他类型的 NMR 约束(残磁偶合、顺磁弛豫增强和赝接触位移)相结合的混合方法,这些方法可以提高生成的 3D 结构的准确性和分辨率,(ii)利用化学位移来模拟稀疏占据的激发态的结构,以及(iii)侧链构象的建模。最后,我们简要讨论了利用位点特异性同位素标记方案记录的稀疏 NMR 数据来进行化学位移驱动的较大分子结构测定的现代方法的优势。通过这篇综述,我们旨在强调化学位移在具有挑战性的生物系统结构测定中的可及性和多功能性,并指出新兴的发展领域,使我们迈向下一代工具。