Suppr超能文献

使用改进的遗传算法对神经网络的结构和参数进行调整。

Tuning of the structure and parameters of a neural network using an improved genetic algorithm.

作者信息

Leung F F, Lam H K, Ling S H, Tam P S

机构信息

Dept. of Electron. and Inf. Eng., Hong Kong Polytech. Univ., Kowloon, China.

出版信息

IEEE Trans Neural Netw. 2003;14(1):79-88. doi: 10.1109/TNN.2002.804317.

Abstract

This paper presents the tuning of the structure and parameters of a neural network using an improved genetic algorithm (GA). It is also shown that the improved GA performs better than the standard GA based on some benchmark test functions. A neural network with switches introduced to its links is proposed. By doing this, the proposed neural network can learn both the input-output relationships of an application and the network structure using the improved GA. The number of hidden nodes is chosen manually by increasing it from a small number until the learning performance in terms of fitness value is good enough. Application examples on sunspot forecasting and associative memory are given to show the merits of the improved GA and the proposed neural network.

摘要

本文提出了一种使用改进遗传算法(GA)对神经网络的结构和参数进行调优的方法。同时还表明,基于一些基准测试函数,改进的GA比标准GA表现更好。提出了一种在其连接中引入开关的神经网络。通过这样做,所提出的神经网络可以使用改进的GA学习应用程序的输入输出关系以及网络结构。隐藏节点的数量通过从少量开始增加,直到适应度值方面的学习性能足够好来手动选择。给出了太阳黑子预测和联想记忆的应用实例,以展示改进的GA和所提出的神经网络的优点。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验