Suppr超能文献

高咬合小鼠模型中的RANKL、骨桥蛋白与破骨细胞稳态

RANKL, osteopontin, and osteoclast homeostasis in a hyperocclusion mouse model.

作者信息

Walker Cameron G, Ito Yoshihiro, Dangaria Smit, Luan Xianghong, Diekwisch Thomas G H

机构信息

Department of Oral Biology, University of Illinois at Chicago, College of Dentistry, Chicago, IL 60612, USA.

出版信息

Eur J Oral Sci. 2008 Aug;116(4):312-8. doi: 10.1111/j.1600-0722.2008.00545.x.

Abstract

The biological mechanisms that maintain the position of teeth in their sockets establish a dynamic equilibrium between bone resorption and apposition. In order to reveal some of the dynamics involved in the tissue responses towards occlusal forces on periodontal ligament (PDL) and alveolar bone homeostasis, we developed the first mouse model of hyperocclusion. Swiss-Webster mice were kept in hyperocclusion for 0, 3, 6, and 9 d. Morphological and histological changes in the periodontium were assessed using micro-computed tomography (micro-CT) and ground sections with fluorescent detection of vital dye labels. Sections were stained for tartrate-resistant acid phosphatase, and the expression of receptor activator of nuclear factor-kappaB ligand (RANKL) and osteopontin (OPN) was analyzed by immunohistochemistry and real-time polymerase chain reaction (PCR). Traumatic occlusion resulted in enamel surface abrasion, inhibition of alveolar bone apposition, significant formation of osteoclasts at 3, 6 and 9 d, and upregulation of OPN and RANKL. Data from this study suggest that both OPN and RANKL contribute to the stimulation of bone resorption in the hyperocclusive state. In addition, we propose that the inhibition of alveolar bone apposition by occlusal forces is an important mechanism for the control of occlusal height that might work in synergy with RANKL-induced bone resorption to maintain normal occlusion.

摘要

维持牙齿在牙槽窝内位置的生物学机制在骨吸收与骨沉积之间建立了动态平衡。为了揭示牙周膜(PDL)对咬合力量的组织反应以及牙槽骨内环境稳定所涉及的一些动态变化,我们构建了首个咬合过紧的小鼠模型。将瑞士 Webster 小鼠置于咬合过紧状态 0、3、6 和 9 天。使用微型计算机断层扫描(micro-CT)和经荧光检测活体染料标记的磨片评估牙周组织的形态学和组织学变化。切片进行抗酒石酸酸性磷酸酶染色,并通过免疫组织化学和实时聚合酶链反应(PCR)分析核因子κB 受体激活剂配体(RANKL)和骨桥蛋白(OPN)的表达。创伤性咬合导致牙釉质表面磨损、牙槽骨沉积受抑制、在第 3、6 和 9 天破骨细胞大量形成以及 OPN 和 RANKL 上调。本研究数据表明,OPN 和 RANKL 均有助于在咬合过紧状态下刺激骨吸收。此外,我们提出咬合力量对牙槽骨沉积的抑制是控制咬合高度的一个重要机制,它可能与 RANKL 诱导的骨吸收协同作用以维持正常咬合。

相似文献

1
RANKL, osteopontin, and osteoclast homeostasis in a hyperocclusion mouse model.
Eur J Oral Sci. 2008 Aug;116(4):312-8. doi: 10.1111/j.1600-0722.2008.00545.x.
4
Cystathionine gamma-lyase aggravates periodontal damage in traumatic occlusion mouse models.
J Periodontal Res. 2020 Oct;55(5):667-675. doi: 10.1111/jre.12753. Epub 2020 Apr 22.
5
Reduced Orthodontic Tooth Movement in Enpp1 Mutant Mice with Hypercementosis.
J Dent Res. 2018 Jul;97(8):937-945. doi: 10.1177/0022034518759295. Epub 2018 Mar 13.
6
Micro-computed tomography for evaluating alveolar bone resorption induced by hyperocclusion.
J Prosthodont Res. 2018 Jul;62(3):298-302. doi: 10.1016/j.jpor.2017.11.004. Epub 2017 Dec 11.
8
Hyperocclusion stimulates osteoclastogenesis via CCL2 expression.
J Dent Res. 2011 Jun;90(6):793-8. doi: 10.1177/0022034511400742. Epub 2011 Mar 10.
9
Mechanism of action and morphologic changes in the alveolar bone in response to selective alveolar decortication-facilitated tooth movement.
Am J Orthod Dentofacial Orthop. 2011 Apr;139(4 Suppl):S83-101. doi: 10.1016/j.ajodo.2010.09.026.

引用本文的文献

4
LITTIP/Lgr6/HnRNPK complex regulates cementogenesis via Wnt signaling.
Int J Oral Sci. 2023 Aug 9;15(1):33. doi: 10.1038/s41368-023-00237-0.
5
Influence of Occlusal Hypofunction on Alveolar Bone Healing in Rats.
Int J Mol Sci. 2023 Jun 5;24(11):9744. doi: 10.3390/ijms24119744.
9
Occlusal Trauma and Bisphosphonate-Related Osteonecrosis of the Jaw in Mice.
Calcif Tissue Int. 2022 Mar;110(3):380-392. doi: 10.1007/s00223-021-00916-2. Epub 2021 Sep 27.
10
Animal Models of Temporomandibular Disorder.
J Pain Res. 2021 May 26;14:1415-1430. doi: 10.2147/JPR.S303536. eCollection 2021.

本文引用的文献

2
Extracellular matrix-mediated tissue remodeling following axial movement of teeth.
J Histochem Cytochem. 2007 Feb;55(2):127-40. doi: 10.1369/jhc.6A7018.2006. Epub 2006 Oct 2.
3
Function and regulation of osteopontin in response to mechanical stress.
J Bone Miner Res. 2006 Jun;21(6):956-64. doi: 10.1359/jbmr.060315.
4
Cellular, molecular, and tissue-level reactions to orthodontic force.
Am J Orthod Dentofacial Orthop. 2006 Apr;129(4):469.e1-32. doi: 10.1016/j.ajodo.2005.10.007.
5
Matricellular proteins: Extracellular modulators of bone development, remodeling, and regeneration.
Bone. 2006 Jun;38(6):749-57. doi: 10.1016/j.bone.2005.11.017. Epub 2006 Jan 18.
6
RANKL-RANK signaling in osteoclastogenesis and bone disease.
Trends Mol Med. 2006 Jan;12(1):17-25. doi: 10.1016/j.molmed.2005.11.007. Epub 2005 Dec 13.
8
Osteoclast signalling pathways.
Biochem Biophys Res Commun. 2005 Mar 18;328(3):728-38. doi: 10.1016/j.bbrc.2004.11.077.
9
EXPERIMENTAL STUDIES ON THE INTERRELATIONS OF CONDYLAR GROWTH AND ALVEOLAR BONE FORMATION.
Angle Orthod. 1965 Jul;35:187-99. doi: 10.1043/0003-3219(1965)035<0187:ESOTIO>2.0.CO;2.
10
Osteoclast differentiation and activation.
Nature. 2003 May 15;423(6937):337-42. doi: 10.1038/nature01658.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验