Ma Jianbing, Liu Weiru, Hunter Anthony, Zhang Weiya
School of Electronics, Electrical Engineering and Computer Science, Queen's University Belfast, Belfast, BT7 1NN, UK.
BMC Med Res Methodol. 2008 Aug 18;8:56. doi: 10.1186/1471-2288-8-56.
Results from clinical trials are usually summarized in the form of sampling distributions. When full information (mean, SEM) about these distributions is given, performing meta-analysis is straightforward. However, when some of the sampling distributions only have mean values, a challenging issue is to decide how to use such distributions in meta-analysis. Currently, the most common approaches are either ignoring such trials or for each trial with a missing SEM, finding a similar trial and taking its SEM value as the missing SEM. Both approaches have drawbacks. As an alternative, this paper develops and tests two new methods, the first being the prognostic method and the second being the interval method, to estimate any missing SEMs from a set of sampling distributions with full information. A merging method is also proposed to handle clinical trials with partial information to simulate meta-analysis.
Both of our methods use the assumption that the samples for which the sampling distributions will be merged are randomly selected from the same population. In the prognostic method, we predict the missing SEMs from the given SEMs. In the interval method, we define intervals that we believe will contain the missing SEMs and then we use these intervals in the merging process.
Two sets of clinical trials are used to verify our methods. One family of trials is on comparing different drugs for reduction of low density lipprotein cholesterol (LDL) for Type-2 diabetes, and the other is about the effectiveness of drugs for lowering intraocular pressure (IOP). Both methods are shown to be useful for approximating the conventional meta-analysis including trials with incomplete information. For example, the meta-analysis result of Latanoprost versus Timolol on IOP reduction for six months provided in 1 was 5.05 +/- 1.15 (Mean +/- SEM) with full information. If the last trial in this study is assumed to be with partial information, the traditional analysis method for dealing with incomplete information that ignores this trial would give 6.49 +/- 1.36 while our prognostic method gives 5.02 +/- 1.15, and our interval method provides two intervals as Mean in [4.25, 5.63] and SEM in [1.01, 1.24].
Both the prognostic and the interval methods are useful alternatives for dealing with missing data in meta-analysis. We recommend clinicians to use the prognostic method to predict the missing SEMs in order to perform meta-analysis and the interval method for obtaining a more cautious result.
临床试验结果通常以抽样分布的形式进行总结。当给出这些分布的完整信息(均值、标准误)时,进行荟萃分析很直接。然而,当一些抽样分布仅有均值时,一个具有挑战性的问题是决定如何在荟萃分析中使用这些分布。目前,最常见的方法要么是忽略此类试验,要么是对于每个缺少标准误的试验,找到一个类似试验并将其标准误值作为缺失的标准误。这两种方法都有缺点。作为一种替代方法,本文开发并测试了两种新方法,第一种是预测方法,第二种是区间方法,用于从一组具有完整信息的抽样分布中估计任何缺失的标准误。还提出了一种合并方法来处理具有部分信息的临床试验以模拟荟萃分析。
我们的两种方法都使用这样的假设,即要合并抽样分布的样本是从同一总体中随机选取的。在预测方法中,我们根据给定的标准误预测缺失的标准误。在区间方法中,我们定义我们认为将包含缺失标准误的区间,然后在合并过程中使用这些区间。
使用两组临床试验来验证我们的方法。一组试验是比较用于降低2型糖尿病患者低密度脂蛋白胆固醇(LDL)的不同药物,另一组是关于降低眼压(IOP)药物的有效性。两种方法都被证明对于近似包括具有不完整信息的试验在内的传统荟萃分析是有用的。例如,在1中给出的拉坦前列素与噻吗洛尔降低眼压六个月的荟萃分析结果在完整信息下为5.05±1.15(均值±标准误)。如果假设本研究中的最后一个试验具有部分信息,处理不完整信息的传统分析方法忽略该试验将给出6.49±1.36,而我们的预测方法给出5.02±1.15,并且我们的区间方法提供两个区间,均值在[4.25, 5.63],标准误在[1.01, 1.24]。
预测方法和区间方法都是处理荟萃分析中缺失数据的有用替代方法。我们建议临床医生使用预测方法来预测缺失的标准误以进行荟萃分析,并使用区间方法以获得更谨慎的结果。