Suppr超能文献

网络乐高积木:细胞接线图的构建模块。

Network legos: building blocks of cellular wiring diagrams.

作者信息

Murali T M, Rivera Corban G

机构信息

Department of Computer Science, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.

出版信息

J Comput Biol. 2008 Sep;15(7):829-44. doi: 10.1089/cmb.2007.0139.

Abstract

Publicly available datasets provide detailed and large-scale information on multiple types of molecular interaction networks in a number of model organisms. The wiring diagrams composed of these interaction networks capture a static view of cellular state. An important challenge in systems biology is obtaining a dynamic perspective on these networks by integrating them with gene expression measurements taken under multiple conditions. We present a top-down computational approach to identify building blocks of molecular interaction networks by: (i) integrating gene expression measurements for a particular disease state (e.g., leukemia) or experimental condition (e.g., treatment with growth serum) with molecular interactions to reveal an active network, which is the network of interactions active in the cell in that disease state or condition; and (ii) systematically combining active networks computed for different experimental conditions using set-theoretic formulae to reveal network legos, which are modules of coherently interacting genes and gene products in the wiring diagram. We propose efficient methods to compute active networks, systematically mine candidate legos, assess the statistical significance of these candidates, arrange them in a directed acyclic graph (DAG), and exploit the structure of the DAG to identify true network legos. We describe methods to assess the stability of our computations to changes in the input and to recover active networks by composing network legos. We analyze two human datasets using our method. A comparison of three leukemias demonstrates how a biologist can use our system to identify specific differences between these diseases. A larger-scale analysis of 13 distinct stresses illustrates our ability to compute the building blocks of the interaction networks activated in response to these stresses. Source code implementing our algorithms is available under version 2 of the GNU General Public License at http://bioinformatics.cs.vt.edu/ murali/software/network-lego.

摘要

公开可用的数据集提供了多种模式生物中多种类型分子相互作用网络的详细且大规模的信息。由这些相互作用网络组成的布线图捕捉了细胞状态的静态视图。系统生物学中的一个重要挑战是通过将这些网络与在多种条件下进行的基因表达测量相结合,从而获得这些网络的动态视角。我们提出了一种自上而下的计算方法,通过以下方式识别分子相互作用网络的构建模块:(i)将特定疾病状态(例如白血病)或实验条件(例如用生长血清处理)下的基因表达测量与分子相互作用相结合,以揭示一个活跃网络,即该疾病状态或条件下细胞中活跃的相互作用网络;(ii)使用集合论公式系统地组合针对不同实验条件计算出的活跃网络,以揭示网络积木,即布线图中相互作用连贯的基因和基因产物模块。我们提出了有效的方法来计算活跃网络、系统地挖掘候选积木、评估这些候选的统计显著性、将它们排列在有向无环图(DAG)中,并利用DAG的结构来识别真正的网络积木。我们描述了评估计算对输入变化的稳定性以及通过组合网络积木来恢复活跃网络的方法。我们使用我们的方法分析了两个人类数据集。对三种白血病的比较展示了生物学家如何使用我们的系统来识别这些疾病之间的特定差异。对13种不同应激的更大规模分析说明了我们计算响应这些应激而激活的相互作用网络构建模块的能力。实现我们算法的源代码可在GNU通用公共许可证第2版下获取,网址为http://bioinformatics.cs.vt.edu/ murali/software/network - lego 。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验