Suppr超能文献

调和基因表达数据与分子相互作用网络。

Reconciling differential gene expression data with molecular interaction networks.

机构信息

Department of Computer Science, Virginia Tech, Blacksburg, VA, USA.

出版信息

Bioinformatics. 2013 Mar 1;29(5):622-9. doi: 10.1093/bioinformatics/btt007. Epub 2013 Jan 12.

Abstract

MOTIVATION

Many techniques have been developed to compute the response network of a cell. A recent trend in this area is to compute response networks of small size, with the rationale that only part of a pathway is often changed by disease and that interpreting small subnetworks is easier than interpreting larger ones. However, these methods may not uncover the spectrum of pathways perturbed in a particular experiment or disease.

RESULTS

To avoid these difficulties, we propose to use algorithms that reconcile case-control DNA microarray data with a molecular interaction network by modifying per-gene differential expression P-values such that two genes connected by an interaction show similar changes in their gene expression values. We provide a novel evaluation of four methods from this class of algorithms. We enumerate three desirable properties that this class of algorithms should address. These properties seek to maintain that the returned gene rankings are specific to the condition being studied. Moreover, to ease interpretation, highly ranked genes should participate in coherent network structures and should be functionally enriched with relevant biological pathways. We comprehensively evaluate the extent to which each algorithm addresses these properties on a compendium of gene expression data for 54 diverse human diseases. We show that the reconciled gene rankings can identify novel disease-related functions that are missed by analyzing expression data alone.

AVAILABILITY

C++ software implementing our algorithms is available in the NetworkReconciliation package as part of the Biorithm software suite under the GNU General Public License: http://bioinformatics.cs.vt.edu/∼murali/software/biorithm-docs.

摘要

动机

已经开发出许多技术来计算细胞的反应网络。该领域的一个最新趋势是计算小尺寸的反应网络,其基本原理是,疾病通常仅改变途径的一部分,并且解释小的子网比解释更大的子网更容易。但是,这些方法可能无法揭示特定实验或疾病中受扰途径的范围。

结果

为了避免这些困难,我们建议使用通过修改每个基因的差异表达 P 值来使病例对照 DNA 微阵列数据与分子相互作用网络相协调的算法,使得通过相互作用连接的两个基因在其基因表达值上显示出相似的变化。我们对该算法类中的四种方法进行了新颖的评估。我们列举了该算法类应解决的三个理想特性。这些特性旨在保持返回的基因排名特定于正在研究的条件。此外,为了便于解释,排名较高的基因应参与连贯的网络结构,并且应在功能上与相关的生物学途径丰富。我们全面评估了每种算法在包含 54 种不同人类疾病的基因表达数据综合集中解决这些特性的程度。我们表明,通过仅分析表达数据,协调后的基因排名可以识别出被忽略的新的疾病相关功能。

可用性

我们的算法的 C++软件可作为 Biorithm 软件套件的 NetworkReconciliation 包的一部分,根据 GNU 通用公共许可证获得:http://bioinformatics.cs.vt.edu/∼murali/software/biorithm-docs。

相似文献

1
Reconciling differential gene expression data with molecular interaction networks.
Bioinformatics. 2013 Mar 1;29(5):622-9. doi: 10.1093/bioinformatics/btt007. Epub 2013 Jan 12.
2
Network legos: building blocks of cellular wiring diagrams.
J Comput Biol. 2008 Sep;15(7):829-44. doi: 10.1089/cmb.2007.0139.
3
Differential regulation enrichment analysis via the integration of transcriptional regulatory network and gene expression data.
Bioinformatics. 2015 Feb 15;31(4):563-71. doi: 10.1093/bioinformatics/btu672. Epub 2014 Oct 15.
4
Identification of co-evolving temporal networks.
BMC Genomics. 2019 Jun 13;20(Suppl 6):434. doi: 10.1186/s12864-019-5719-9.
5
A scalable approach for discovering conserved active subnetworks across species.
PLoS Comput Biol. 2010 Dec 9;6(12):e1001028. doi: 10.1371/journal.pcbi.1001028.
7
Gene expression network analysis and applications to immunology.
Bioinformatics. 2007 Apr 1;23(7):850-8. doi: 10.1093/bioinformatics/btm019. Epub 2007 Jan 31.
8
BNArray: an R package for constructing gene regulatory networks from microarray data by using Bayesian network.
Bioinformatics. 2006 Dec 1;22(23):2952-4. doi: 10.1093/bioinformatics/btl491. Epub 2006 Sep 27.
9
Network-based functional enrichment.
BMC Bioinformatics. 2011;12 Suppl 13(Suppl 13):S14. doi: 10.1186/1471-2105-12-s13-s14. Epub 2011 Nov 30.
10
Network inference algorithms elucidate Nrf2 regulation of mouse lung oxidative stress.
PLoS Comput Biol. 2008 Aug 29;4(8):e1000166. doi: 10.1371/journal.pcbi.1000166.

引用本文的文献

2
Use of Graph Theory to Characterize Human and Arthropod Vector Cell Protein Response to Infection With .
Front Cell Infect Microbiol. 2018 Aug 3;8:265. doi: 10.3389/fcimb.2018.00265. eCollection 2018.
4
Transcription, epigenetics and ameliorative strategies in Huntington's Disease: a genome-wide perspective.
Mol Neurobiol. 2015 Feb;51(1):406-23. doi: 10.1007/s12035-014-8715-8. Epub 2014 May 1.
5
Epigenetic memory: the Lamarckian brain.
EMBO J. 2014 May 2;33(9):945-67. doi: 10.1002/embj.201387637. Epub 2014 Apr 9.

本文引用的文献

1
Google goes cancer: improving outcome prediction for cancer patients by network-based ranking of marker genes.
PLoS Comput Biol. 2012;8(5):e1002511. doi: 10.1371/journal.pcbi.1002511. Epub 2012 May 17.
2
TFRank: network-based prioritization of regulatory associations underlying transcriptional responses.
Bioinformatics. 2011 Nov 15;27(22):3149-57. doi: 10.1093/bioinformatics/btr546. Epub 2011 Sep 29.
3
Algorithms for detecting significantly mutated pathways in cancer.
J Comput Biol. 2011 Mar;18(3):507-22. doi: 10.1089/cmb.2010.0265.
4
Subnetwork state functions define dysregulated subnetworks in cancer.
J Comput Biol. 2011 Mar;18(3):263-81. doi: 10.1089/cmb.2010.0269.
5
DEGAS: de novo discovery of dysregulated pathways in human diseases.
PLoS One. 2010 Oct 19;5(10):e13367. doi: 10.1371/journal.pone.0013367.
7
Use of data-biased random walks on graphs for the retrieval of context-specific networks from genomic data.
PLoS Comput Biol. 2010 Aug 19;6(8):e1000889. doi: 10.1371/journal.pcbi.1000889.
8
Integration of pathway knowledge into a reweighted recursive feature elimination approach for risk stratification of cancer patients.
Bioinformatics. 2010 Sep 1;26(17):2136-44. doi: 10.1093/bioinformatics/btq345. Epub 2010 Jun 30.
9
BioNet: an R-Package for the functional analysis of biological networks.
Bioinformatics. 2010 Apr 15;26(8):1129-30. doi: 10.1093/bioinformatics/btq089. Epub 2010 Feb 25.
10
GOing Bayesian: model-based gene set analysis of genome-scale data.
Nucleic Acids Res. 2010 Jun;38(11):3523-32. doi: 10.1093/nar/gkq045. Epub 2010 Feb 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验