Suppr超能文献

吠琉璃:一个基于多本体、概念和上下文敏感的临床指南搜索引擎。

Vaidurya: a multiple-ontology, concept-based, context-sensitive clinical-guideline search engine.

作者信息

Moskovitch Robert, Shahar Yuval

机构信息

Medical Informatics Research Center, Department of Information Systems Engineering, Ben Gurion University, P.O. Box 653, Beer Sheva 84105, Israel.

出版信息

J Biomed Inform. 2009 Feb;42(1):11-21. doi: 10.1016/j.jbi.2008.07.003. Epub 2008 Aug 3.

Abstract

We designed and implemented a generic search engine (Vaidurya), as part of our Digital clinical-Guideline Library (DeGeL) framework. Two search methods were implemented in addition to full-text search: (1) concept-based search, which relies on pre-indexing the guidelines in a clinically meaningful fashion, and (2) context-sensitive search, which relies on first semi-structuring the guidelines according to a given ontology, then searching for terms within specific labeled text segments. The Vaidurya engine is fully functional and is used within the DeGeL system. We describe the Vaidurya ontological and algorithmic framework; we also briefly summarize the results of a detailed evaluation in the clinical-guideline domain, demonstrating that both concept-based and context-sensitive ontology-independent search are highly feasible and significantly improve on free text search retrieval performance. We conclude by analyzing the limitations and advantages of the approach, and the steps that we have started to take to extend it based on user feedback.

摘要

作为我们数字临床指南库(DeGeL)框架的一部分,我们设计并实现了一个通用搜索引擎(Vaidurya)。除全文搜索外,还实现了两种搜索方法:(1)基于概念的搜索,它依赖于以临床有意义的方式对指南进行预索引;(2)上下文敏感搜索,它首先根据给定的本体对指南进行半结构化处理,然后在特定标记的文本段内搜索术语。Vaidurya引擎功能齐全,在DeGeL系统中使用。我们描述了Vaidurya本体和算法框架;我们还简要总结了临床指南领域详细评估的结果,表明基于概念的和上下文敏感的独立于本体的搜索都是高度可行的,并且显著提高了自由文本搜索检索性能。我们通过分析该方法的局限性和优点以及我们根据用户反馈开始采取的扩展步骤来得出结论。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验