Bai Yu, Chu Vincent B, Lipfert Jan, Pande Vijay S, Herschlag Daniel, Doniach Sebastian
Department of Biochemistry, Stanford University, California 94305, USA.
J Am Chem Soc. 2008 Sep 17;130(37):12334-41. doi: 10.1021/ja800854u. Epub 2008 Aug 23.
Electrostatic forces, acting between helices and modulated by the presence of the ion atmosphere, are key determinants in the energetic balance that governs RNA folding. Previous studies have employed Poisson-Boltzmann (PB) theory to compute the energetic contribution of these forces in RNA folding. However, the complex interaction of these electrostatic forces with RNA features such as tertiary contact formation, specific ion-binding, and complex interhelical junctions present in prior studies precluded a rigorous evaluation of PB theory, especially in physiologically important Mg(2+) solutions. To critically assess PB theory, we developed a model system that isolates these electrostatic forces. The model system, composed of two DNA duplexes tethered by a polyethylene glycol junction, is an analog for the unfolded state of canonical helix-junction-helix motifs found in virtually all structured RNAs. This model system lacks the complicating features that have precluded a critical assessment of PB in prior studies, ensuring that interhelical electrostatic forces dominate the behavior of the system. The system's simplicity allows PB predictions to be directly compared with small-angle X-ray scattering experiments over a range of monovalent and divalent ion concentrations. These comparisons indicate that PB is a reasonable description of the underlying electrostatic energies for monovalent ions, but large deviations are observed for divalent ions. The validation of PB for monovalent solutions allows analysis of the change in the conformational ensemble of this simple motif as salt concentration is changed. Addition of ions allows the motif to sample more compact microstates, increasing its conformational entropy. The increase of conformational entropy presents an additional barrier to folding by stabilizing the unfolded state. Neglecting this effect will adversely impact the accuracy of folding analyses and models.
静电作用力存在于螺旋之间,并受离子氛围的调制,是决定RNA折叠能量平衡的关键因素。以往的研究采用泊松-玻尔兹曼(PB)理论来计算这些作用力在RNA折叠中的能量贡献。然而,在先前的研究中,这些静电力与RNA特征(如三级接触形成、特定离子结合和复杂的螺旋间连接)之间的复杂相互作用妨碍了对PB理论的严格评估,尤其是在生理上重要的Mg(2+)溶液中。为了严格评估PB理论,我们开发了一个分离这些静电力的模型系统。该模型系统由两个通过聚乙二醇连接的DNA双链组成,类似于几乎所有结构化RNA中发现的典型螺旋-连接-螺旋基序的未折叠状态。这个模型系统没有先前研究中妨碍对PB进行严格评估的复杂特征,确保了螺旋间静电力主导系统的行为。系统的简单性使得PB预测能够直接与一系列单价和二价离子浓度下的小角X射线散射实验进行比较。这些比较表明,PB对于单价离子的潜在静电能量是一个合理的描述,但对于二价离子则观察到较大偏差。单价溶液中PB的验证使得能够分析随着盐浓度变化,这个简单基序构象集合的变化。添加离子使基序能够采样更紧凑的微观状态,增加其构象熵。构象熵的增加通过稳定未折叠状态为折叠带来了额外的障碍。忽略这种效应将对折叠分析和模型的准确性产生不利影响。