Department of Biochemistry, Stanford University, Stanford, California.
Department of Biochemistry, Stanford University, Stanford, California; Department of Chemistry, Stanford University, Stanford, California; ChEM-H Institute, Stanford University, Stanford, California.
Biophys J. 2019 Sep 17;117(6):1116-1124. doi: 10.1016/j.bpj.2019.08.007. Epub 2019 Aug 12.
RNAs are one of the most charged polyelectrolytes in nature, and understanding their electrostatics is fundamental to their structure and biological functions. An effective way to characterize the electrostatic field generated by nucleic acids is to quantify interactions between nucleic acids and ions that surround the molecules. These ions form a loosely associated cloud referred to as an ion atmosphere. Although theoretical and computational studies can describe the ion atmosphere around RNAs, benchmarks are needed to guide the development of these approaches, and experiments to date that read out RNA-ion interactions are limited. Here, we present ion counting studies to quantify the number of ions surrounding well-defined model systems of RNA and DNA duplexes. We observe that the RNA duplex attracts more cations and expels fewer anions compared to the DNA duplex, and the RNA duplex interacts significantly stronger with the divalent cation Mg, despite their identical total charge. These experimental results suggest that the RNA duplex generates a stronger electrostatic field than DNA, as is predicted based on the structural differences between their helices. Theoretical calculations using a nonlinear Poisson-Boltzmann equation give excellent agreement with experiments for monovalent ions but underestimate Mg-DNA and Mg-RNA interactions by 20%. These studies provide needed stringent benchmarks to use against other all-atom theoretical models of RNA-ion interactions, interactions that likely must be accurately accounted for in structural, dynamic, and energetic terms to confidently model RNA structure, interactions, and function.
RNA 是自然界中带电荷最多的多聚电解质之一,了解其静电性质对于理解其结构和生物功能至关重要。一种描述核酸产生的静电场的有效方法是量化核酸与围绕分子的离子之间的相互作用。这些离子形成一个松散结合的云,称为离子气氛。虽然理论和计算研究可以描述 RNA 周围的离子气氛,但需要基准来指导这些方法的发展,并且迄今为止,能够读取 RNA-离子相互作用的实验是有限的。在这里,我们进行离子计数研究,以定量测量围绕明确的 RNA 和 DNA 双链体模型系统的离子数量。我们观察到,与 DNA 双链体相比,RNA 双链体吸引更多的阳离子并排出更少的阴离子,并且尽管它们的总电荷相同,RNA 双链体与二价阳离子 Mg 的相互作用要强得多。这些实验结果表明,RNA 双链体产生的静电场比 DNA 更强,这与它们螺旋之间的结构差异所预测的一致。使用非线性泊松-玻尔兹曼方程的理论计算与实验结果在单价离子方面非常吻合,但对 Mg-DNA 和 Mg-RNA 相互作用的估计低估了 20%。这些研究为 RNA-离子相互作用的其他全原子理论模型提供了急需的严格基准,这些相互作用在结构、动态和能量方面都需要准确考虑,以有信心地对 RNA 结构、相互作用和功能进行建模。