Suppr超能文献

利用深度学习和溶液散射预测RNA结构与动力学

Predicting RNA structure and dynamics with deep learning and solution scattering.

作者信息

Patt Edan, Classen Scott, Hammel Michal, Schneidman-Duhovny Dina

机构信息

School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel.

Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California.

出版信息

Biophys J. 2025 Feb 4;124(3):549-564. doi: 10.1016/j.bpj.2024.12.024. Epub 2024 Dec 25.

Abstract

Advanced deep learning and statistical methods can predict structural models for RNA molecules. However, RNAs are flexible, and it remains difficult to describe their macromolecular conformations in solutions where varying conditions can induce conformational changes. Small-angle x-ray scattering (SAXS) in solution is an efficient technique to validate structural predictions by comparing the experimental SAXS profile with those calculated from predicted structures. There are two main challenges in comparing SAXS profiles to RNA structures: the absence of cations essential for stability and charge neutralization in predicted structures and the inadequacy of a single structure to represent RNA's conformational plasticity. We introduce a solution conformation predictor for RNA (SCOPER) to address these challenges. This pipeline integrates kinematics-based conformational sampling with the innovative deep learning model, IonNet, designed for predicting Mg ion binding sites. Validated through benchmarking against 14 experimental data sets, SCOPER significantly improved the quality of SAXS profile fits by including Mg ions and sampling of conformational plasticity. We observe that an increased content of monovalent and bivalent ions leads to decreased RNA plasticity. Therefore, carefully adjusting the plasticity and ion density is crucial to avoid overfitting experimental SAXS data. SCOPER is an efficient tool for accurately validating the solution state of RNAs given an initial, sufficiently accurate structure and provides the corrected atomistic model, including ions.

摘要

先进的深度学习和统计方法可以预测RNA分子的结构模型。然而,RNA具有灵活性,在不同条件可诱导构象变化的溶液中描述其大分子构象仍然很困难。溶液中的小角X射线散射(SAXS)是一种通过将实验SAXS图谱与根据预测结构计算的图谱进行比较来验证结构预测的有效技术。将SAXS图谱与RNA结构进行比较存在两个主要挑战:预测结构中缺乏对稳定性和电荷中和至关重要的阳离子,以及单一结构不足以代表RNA的构象可塑性。我们引入了一种用于RNA的溶液构象预测器(SCOPER)来应对这些挑战。该流程将基于运动学的构象采样与专为预测镁离子结合位点设计的创新深度学习模型IonNet相结合。通过针对14个实验数据集进行基准测试验证,SCOPER通过纳入镁离子和构象可塑性采样显著提高了SAXS图谱拟合的质量。我们观察到单价和二价离子含量的增加会导致RNA可塑性降低。因此,仔细调整可塑性和离子密度对于避免过度拟合实验SAXS数据至关重要。SCOPER是一种有效的工具,在给定初始足够准确结构的情况下,可准确验证RNA的溶液状态,并提供包括离子在内的校正原子模型。

相似文献

1
Predicting RNA structure and dynamics with deep learning and solution scattering.
Biophys J. 2025 Feb 4;124(3):549-564. doi: 10.1016/j.bpj.2024.12.024. Epub 2024 Dec 25.
2
Predicting RNA Structure and Dynamics with Deep Learning and Solution Scattering.
bioRxiv. 2024 Dec 21:2024.06.08.598075. doi: 10.1101/2024.06.08.598075.
3
Are Current Survival Prediction Tools Useful When Treating Subsequent Skeletal-related Events From Bone Metastases?
Clin Orthop Relat Res. 2024 Sep 1;482(9):1710-1721. doi: 10.1097/CORR.0000000000003030. Epub 2024 Mar 22.
4
Structural dynamics of IDR interactions in human SFPQ and implications for liquid-liquid phase separation.
Acta Crystallogr D Struct Biol. 2025 Jul 1;81(Pt 7):357-379. doi: 10.1107/S2059798325005303. Epub 2025 Jun 27.
5
Sertindole for schizophrenia.
Cochrane Database Syst Rev. 2005 Jul 20;2005(3):CD001715. doi: 10.1002/14651858.CD001715.pub2.
8
Management of urinary stones by experts in stone disease (ESD 2025).
Arch Ital Urol Androl. 2025 Jun 30;97(2):14085. doi: 10.4081/aiua.2025.14085.
9
Behavioral interventions to reduce risk for sexual transmission of HIV among men who have sex with men.
Cochrane Database Syst Rev. 2008 Jul 16(3):CD001230. doi: 10.1002/14651858.CD001230.pub2.
10
Effectiveness and safety of vitamin D in relation to bone health.
Evid Rep Technol Assess (Full Rep). 2007 Aug(158):1-235.

本文引用的文献

1
Addendum: Accurate structure prediction of biomolecular interactions with AlphaFold 3.
Nature. 2024 Dec;636(8042):E4. doi: 10.1038/s41586-024-08416-7.
2
3
Assessment of three-dimensional RNA structure prediction in CASP15.
Proteins. 2023 Dec;91(12):1747-1770. doi: 10.1002/prot.26602. Epub 2023 Oct 24.
4
RNA 3D structure modeling by fragment assembly with small-angle X-ray scattering restraints.
Bioinformatics. 2023 Sep 2;39(9). doi: 10.1093/bioinformatics/btad527.
5
Graph deep learning locates magnesium ions in RNA.
QRB Discov. 2022;3. doi: 10.1017/qrd.2022.17. Epub 2022 Oct 6.
6
Internal Normal Mode Analysis Applied to RNA Flexibility and Conformational Changes.
J Chem Inf Model. 2023 Apr 24;63(8):2554-2572. doi: 10.1021/acs.jcim.2c01509. Epub 2023 Mar 27.
8
Learning From Noisy Labels With Deep Neural Networks: A Survey.
IEEE Trans Neural Netw Learn Syst. 2023 Nov;34(11):8135-8153. doi: 10.1109/TNNLS.2022.3152527. Epub 2023 Oct 27.
9
Cryo-EM advances in RNA structure determination.
Signal Transduct Target Ther. 2022 Feb 23;7(1):58. doi: 10.1038/s41392-022-00916-0.
10
: expanded functionality and new tools for small-angle scattering data analysis.
J Appl Crystallogr. 2021 Feb 1;54(Pt 1):343-355. doi: 10.1107/S1600576720013412.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验