Suppr超能文献

系统性红斑狼疮中T细胞活化与死亡的代谢调控

Metabolic control of T cell activation and death in SLE.

作者信息

Fernandez David, Perl Andras

机构信息

Division of Rheumatology, Department of Medicine, State University of New York, Upstate Medical University, College of Medicine, Syracuse, New York 13210, USA.

出版信息

Autoimmun Rev. 2009 Jan;8(3):184-9. doi: 10.1016/j.autrev.2008.07.041. Epub 2008 Aug 21.

Abstract

Systemic lupus erythematosus (SLE) is characterized by abnormal T cell activation and death, processes which are crucially dependent on the controlled production of reactive oxygen intermediates (ROI) and of ATP in mitochondria. The mitochondrial transmembrane potential (Deltapsi(m)) has conclusively emerged as a critical checkpoint of ATP synthesis and cell death. Lupus T cells exhibit persistent elevation of Deltapsi(m) or mitochondrial hyperpolarization (MHP) as well as depletion of ATP and glutathione which decrease activation-induced apoptosis and instead predispose T cells for necrosis, thus stimulating inflammation in SLE. NO-induced mitochondrial biogenesis in normal T cells accelerates the rapid phase and reduces the plateau of Ca(2+) influx upon CD3/CD28 co-stimulation, thus mimicking the Ca(2+) signaling profile of lupus T cells. Treatment of SLE patients with rapamycin improves disease activity, normalizes CD3/CD28-induced Ca(2+) fluxing but fails to affect MHP, suggesting that altered Ca(2+) fluxing is downstream or independent of mitochondrial dysfunction. Understanding the molecular basis and consequences of MHP is essential for controlling T cell activation and death signaling in SLE.

摘要

系统性红斑狼疮(SLE)的特征在于T细胞的异常激活和死亡,这些过程关键依赖于线粒体中活性氧中间体(ROI)和ATP的受控产生。线粒体跨膜电位(ΔΨm)已最终成为ATP合成和细胞死亡的关键检查点。狼疮T细胞表现出ΔΨm的持续升高或线粒体超极化(MHP)以及ATP和谷胱甘肽的消耗,这会减少激活诱导的细胞凋亡,反而使T细胞易发生坏死,从而在SLE中刺激炎症。正常T细胞中NO诱导的线粒体生物发生加速了快速期,并减少了CD3/CD28共刺激时Ca(2+)内流的平台期,从而模拟了狼疮T细胞的Ca(2+)信号特征。用雷帕霉素治疗SLE患者可改善疾病活动度,使CD3/CD28诱导的Ca(2+)通量正常化,但未能影响MHP,这表明改变的Ca(2+)通量是线粒体功能障碍的下游或与之无关。了解MHP的分子基础和后果对于控制SLE中T细胞的激活和死亡信号至关重要。

相似文献

1
Metabolic control of T cell activation and death in SLE.
Autoimmun Rev. 2009 Jan;8(3):184-9. doi: 10.1016/j.autrev.2008.07.041. Epub 2008 Aug 21.
2
Nitric oxide-dependent mitochondrial biogenesis generates Ca2+ signaling profile of lupus T cells.
J Immunol. 2004 Sep 15;173(6):3676-83. doi: 10.4049/jimmunol.173.6.3676.
3
Mitochondrial hyperpolarization and ATP depletion in patients with systemic lupus erythematosus.
Arthritis Rheum. 2002 Jan;46(1):175-90. doi: 10.1002/1529-0131(200201)46:1<175::AID-ART10015>3.0.CO;2-H.
5
9
Mitochondrial dysfunction in T cells of patients with systemic lupus erythematosus.
Int Rev Immunol. 2004 May-Aug;23(3-4):293-313. doi: 10.1080/08830180490452576.
10
The role of nitric oxide in abnormal T cell signal transduction in systemic lupus erythematosus.
Clin Immunol. 2006 Feb-Mar;118(2-3):145-51. doi: 10.1016/j.clim.2005.10.016. Epub 2006 Jan 10.

引用本文的文献

3
Rapamycin Augmentation of Chronic Ketamine as a Novel Treatment for Complex Regional Pain Syndrome.
Cureus. 2023 Aug 18;15(8):e43715. doi: 10.7759/cureus.43715. eCollection 2023 Aug.
4
A cellular overview of immunometabolism in systemic lupus erythematosus.
Oxf Open Immunol. 2023 May 11;4(1):iqad005. doi: 10.1093/oxfimm/iqad005. eCollection 2023.
5
Use of Next-Generation Sequencing for Identifying Mitochondrial Disorders.
Curr Issues Mol Biol. 2022 Feb 27;44(3):1127-1148. doi: 10.3390/cimb44030074.
6
7
The immunology of rheumatoid arthritis.
Nat Immunol. 2021 Jan;22(1):10-18. doi: 10.1038/s41590-020-00816-x. Epub 2020 Nov 30.
8
Targeting mitochondrial oxidative stress with MitoQ reduces NET formation and kidney disease in lupus-prone MRL- mice.
Lupus Sci Med. 2020 Apr;7(1). doi: 10.1136/lupus-2020-000387. Epub 2020 Apr 16.
9
Insights Into the Role of Mitochondrial Ion Channels in Inflammatory Response.
Front Physiol. 2020 Apr 9;11:258. doi: 10.3389/fphys.2020.00258. eCollection 2020.
10
Carnitine Palmitoyl Transferase Deficiency in a University Immunology Practice.
Curr Rheumatol Rep. 2020 Feb 14;22(3):8. doi: 10.1007/s11926-020-0879-9.

本文引用的文献

1
Nitric oxide, mitochondrial hyperpolarization, and T cell activation.
Free Radic Biol Med. 2007 Jun 1;42(11):1625-31. doi: 10.1016/j.freeradbiomed.2007.02.026. Epub 2007 Mar 3.
2
Deficient CD4+CD25high T regulatory cell function in patients with active systemic lupus erythematosus.
J Immunol. 2007 Feb 15;178(4):2579-88. doi: 10.4049/jimmunol.178.4.2579.
5
Nitric oxide and mitochondrial biogenesis.
J Cell Sci. 2006 Jul 15;119(Pt 14):2855-62. doi: 10.1242/jcs.03062.
6
Endothelial nitric oxide synthase regulates T cell receptor signaling at the immunological synapse.
Immunity. 2006 Jun;24(6):753-765. doi: 10.1016/j.immuni.2006.04.006.
7
High-dose acetylcysteine in idiopathic pulmonary fibrosis.
N Engl J Med. 2005 Nov 24;353(21):2229-42. doi: 10.1056/NEJMoa042976.
8
In smooth muscle, FK506-binding protein modulates IP3 receptor-evoked Ca2+ release by mTOR and calcineurin.
J Cell Sci. 2005 Dec 1;118(Pt 23):5443-51. doi: 10.1242/jcs.02657. Epub 2005 Nov 8.
9
Macroautophagy versus mitochondrial autophagy: a question of fate?
Cell Death Differ. 2005 Nov;12 Suppl 2:1484-9. doi: 10.1038/sj.cdd.4401780.
10
Immune cells and cytokines in systemic lupus erythematosus: an update.
Curr Opin Rheumatol. 2005 Sep;17(5):518-22. doi: 10.1097/01.bor.0000170479.01451.ab.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验