Suppr超能文献

SpoT调节饥饿碳源条件下新月柄杆菌中DnaA的稳定性及DNA复制起始。

SpoT regulates DnaA stability and initiation of DNA replication in carbon-starved Caulobacter crescentus.

作者信息

Lesley Joseph A, Shapiro Lucy

机构信息

Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.

出版信息

J Bacteriol. 2008 Oct;190(20):6867-80. doi: 10.1128/JB.00700-08. Epub 2008 Aug 22.

Abstract

Cell cycle progression and polar differentiation are temporally coordinated in Caulobacter crescentus. This oligotrophic bacterium divides asymmetrically to produce a motile swarmer cell that represses DNA replication and a sessile stalked cell that replicates its DNA. The initiation of DNA replication coincides with the proteolysis of the CtrA replication inhibitor and the accumulation of DnaA, the replication initiator, upon differentiation of the swarmer cell into a stalked cell. We analyzed the adaptive response of C. crescentus swarmer cells to carbon starvation and found that there was a block in both the swarmer-to-stalked cell polar differentiation program and the initiation of DNA replication. SpoT is a bifunctional synthase/hydrolase that controls the steady-state level of the stress-signaling nucleotide (p)ppGpp, and carbon starvation caused a SpoT-dependent increase in (p)ppGpp concentration. Carbon starvation activates DnaA proteolysis (B. Gorbatyuk and G. T. Marczynski, Mol. Microbiol. 55:1233-1245, 2005). We observed that SpoT is required for this phenomenon in swarmer cells, and in the absence of SpoT, carbon-starved swarmer cells inappropriately initiated DNA replication. Since SpoT controls (p)ppGpp abundance, we propose that this nucleotide relays carbon starvation signals to the cellular factors responsible for activating DnaA proteolysis, thereby inhibiting the initiation of DNA replication. SpoT, however, was not required for the carbon starvation block of the swarmer-to-stalked cell polar differentiation program. Thus, swarmer cells utilize at least two independent signaling pathways to relay carbon starvation signals: a SpoT-dependent pathway mediating the inhibition of DNA replication initiation, and a SpoT-independent pathway(s) that blocks morphological differentiation.

摘要

新月柄杆菌的细胞周期进程和极性分化在时间上是协调的。这种贫营养细菌进行不对称分裂,产生一个抑制DNA复制的游动细胞和一个复制其DNA的固着柄细胞。DNA复制的起始与CtrA复制抑制剂的蛋白水解以及游动细胞分化为柄细胞时复制起始因子DnaA的积累同时发生。我们分析了新月柄杆菌游动细胞对碳饥饿的适应性反应,发现游动细胞到柄细胞的极性分化程序和DNA复制的起始均受阻。SpoT是一种双功能合成酶/水解酶,可控制应激信号核苷酸(p)ppGpp的稳态水平,碳饥饿导致SpoT依赖的(p)ppGpp浓度增加。碳饥饿激活DnaA蛋白水解(B. Gorbatyuk和G. T. Marczynski,《分子微生物学》55:1233 - 1245,2005)。我们观察到SpoT是游动细胞中这一现象所必需的,在没有SpoT的情况下,碳饥饿的游动细胞会不恰当地起始DNA复制。由于SpoT控制(p)ppGpp的丰度,我们提出这种核苷酸将碳饥饿信号传递给负责激活DnaA蛋白水解的细胞因子,从而抑制DNA复制的起始。然而,SpoT对于游动细胞到柄细胞极性分化程序的碳饥饿阻断并非必需。因此,游动细胞利用至少两条独立的信号通路来传递碳饥饿信号:一条依赖SpoT的通路介导对DNA复制起始的抑制,以及一条不依赖SpoT的通路阻断形态分化。

相似文献

1
SpoT regulates DnaA stability and initiation of DNA replication in carbon-starved Caulobacter crescentus.
J Bacteriol. 2008 Oct;190(20):6867-80. doi: 10.1128/JB.00700-08. Epub 2008 Aug 22.
2
Effects of (p)ppGpp on the progression of the cell cycle of Caulobacter crescentus.
J Bacteriol. 2014 Jul;196(14):2514-25. doi: 10.1128/JB.01575-14. Epub 2014 May 2.
3
Phosphate starvation decouples cell differentiation from DNA replication control in the dimorphic bacterium Caulobacter crescentus.
PLoS Genet. 2023 Nov 27;19(11):e1010882. doi: 10.1371/journal.pgen.1010882. eCollection 2023 Nov.
4
ppGpp and polyphosphate modulate cell cycle progression in Caulobacter crescentus.
J Bacteriol. 2012 Jan;194(1):28-35. doi: 10.1128/JB.05932-11. Epub 2011 Oct 21.
5
Regulation of chromosomal replication in Caulobacter crescentus.
Plasmid. 2012 Mar;67(2):76-87. doi: 10.1016/j.plasmid.2011.12.007. Epub 2011 Dec 29.
6
DnaA coordinates replication initiation and cell cycle transcription in Caulobacter crescentus.
Mol Microbiol. 2005 Dec;58(5):1340-53. doi: 10.1111/j.1365-2958.2005.04912.x.
7
Physiological consequences of blocked Caulobacter crescentus dnaA expression, an essential DNA replication gene.
Mol Microbiol. 2001 Apr;40(2):485-97. doi: 10.1046/j.1365-2958.2001.02404.x.
8
Regulated degradation of chromosome replication proteins DnaA and CtrA in Caulobacter crescentus.
Mol Microbiol. 2005 Feb;55(4):1233-45. doi: 10.1111/j.1365-2958.2004.04459.x.
9
Multilayered control of chromosome replication in .
Biochem Soc Trans. 2019 Feb 28;47(1):187-196. doi: 10.1042/BST20180460. Epub 2019 Jan 9.
10
Regulation of the replication initiator DnaA in Caulobacter crescentus.
Biochim Biophys Acta Gene Regul Mech. 2019 Jul;1862(7):697-705. doi: 10.1016/j.bbagrm.2018.01.004. Epub 2018 Jan 31.

引用本文的文献

1
Live tracking of replisomes reveals nutrient-dependent regulation of replication elongation rates in Caulobacter crescentus.
Curr Biol. 2025 Apr 21;35(8):1816-1827.e3. doi: 10.1016/j.cub.2025.03.009. Epub 2025 Mar 31.
2
Comparison of transcriptomic profiles between intracellular and extracellular Bartonella henselae.
Commun Biol. 2025 Jan 29;8(1):143. doi: 10.1038/s42003-025-07535-9.
3
Coupling of cell growth modulation to asymmetric division and cell cycle regulation in .
Proc Natl Acad Sci U S A. 2024 Oct 8;121(41):e2406397121. doi: 10.1073/pnas.2406397121. Epub 2024 Oct 3.
5
Regulation of the transcription factor CdnL promotes adaptation to nutrient stress in .
PNAS Nexus. 2024 Apr 10;3(4):pgae154. doi: 10.1093/pnasnexus/pgae154. eCollection 2024 Apr.
6
Regulation of the transcription factor CdnL promotes adaptation to nutrient stress in .
bioRxiv. 2023 Dec 21:2023.12.20.572625. doi: 10.1101/2023.12.20.572625.
7
Phosphate starvation decouples cell differentiation from DNA replication control in the dimorphic bacterium Caulobacter crescentus.
PLoS Genet. 2023 Nov 27;19(11):e1010882. doi: 10.1371/journal.pgen.1010882. eCollection 2023 Nov.
8

本文引用的文献

1
Control of bacterial transcription, translation and replication by (p)ppGpp.
Curr Opin Microbiol. 2008 Apr;11(2):100-5. doi: 10.1016/j.mib.2008.02.001. Epub 2008 Mar 24.
2
Systems biology of Caulobacter.
Annu Rev Genet. 2007;41:429-41. doi: 10.1146/annurev.genet.41.110306.130346.
3
G-protein control of the ribosome-associated stress response protein SpoT.
J Bacteriol. 2007 Sep;189(17):6140-7. doi: 10.1128/JB.00315-07. Epub 2007 Jul 6.
4
Regulation of the stringent response is the essential function of the conserved bacterial G protein CgtA in Vibrio cholerae.
Proc Natl Acad Sci U S A. 2007 Mar 13;104(11):4636-41. doi: 10.1073/pnas.0611650104. Epub 2007 Mar 5.
5
Nutritional control of elongation of DNA replication by (p)ppGpp.
Cell. 2007 Mar 9;128(5):865-75. doi: 10.1016/j.cell.2006.12.043.
6
Acyl carrier protein/SpoT interaction, the switch linking SpoT-dependent stress response to fatty acid metabolism.
Mol Microbiol. 2006 Nov;62(4):1048-63. doi: 10.1111/j.1365-2958.2006.05442.x.
7
The nucleotide-binding site of bacterial translation initiation factor 2 (IF2) as a metabolic sensor.
Proc Natl Acad Sci U S A. 2006 Sep 19;103(38):13962-7. doi: 10.1073/pnas.0606384103. Epub 2006 Sep 12.
8
MipZ, a spatial regulator coordinating chromosome segregation with cell division in Caulobacter.
Cell. 2006 Jul 14;126(1):147-62. doi: 10.1016/j.cell.2006.05.038.
9
The role of replication initiation control in promoting survival of replication fork damage.
Mol Microbiol. 2006 Apr;60(1):229-39. doi: 10.1111/j.1365-2958.2006.05093.x.
10
A landmark protein essential for establishing and perpetuating the polarity of a bacterial cell.
Cell. 2006 Mar 10;124(5):1011-23. doi: 10.1016/j.cell.2005.12.040.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验