Suppr超能文献

用于解决心电图逆问题的两种混合正则化框架。

Two hybrid regularization frameworks for solving the electrocardiography inverse problem.

作者信息

Jiang Mingfeng, Xia Ling, Shou Guofa, Liu Feng, Crozier Stuart

机构信息

Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China.

出版信息

Phys Med Biol. 2008 Sep 21;53(18):5151-64. doi: 10.1088/0031-9155/53/18/020. Epub 2008 Aug 22.

Abstract

In this paper, two hybrid regularization frameworks, LSQR-Tik and Tik-LSQR, which integrate the properties of the direct regularization method (Tikhonov) and the iterative regularization method (LSQR), have been proposed and investigated for solving ECG inverse problems. The LSQR-Tik method is based on the Lanczos process, which yields a sequence of small bidiagonal systems to approximate the original ill-posed problem and then the Tikhonov regularization method is applied to stabilize the projected problem. The Tik-LSQR method is formulated as an iterative LSQR inverse, augmented with a Tikhonov-like prior information term. The performances of these two hybrid methods are evaluated using a realistic heart-torso model simulation protocol, in which the heart surface source method is employed to calculate the simulated epicardial potentials (EPs) from the action potentials (APs), and then the acquired EPs are used to calculate simulated body surface potentials (BSPs). The results show that the regularized solutions obtained by the LSQR-Tik method are approximate to those of the Tikhonov method, the computational cost of the LSQR-Tik method, however, is much less than that of the Tikhonov method. Moreover, the Tik-LSQR scheme can reconstruct the epcicardial potential distribution more accurately, specifically for the BSPs with large noisy cases. This investigation suggests that hybrid regularization methods may be more effective than separate regularization approaches for ECG inverse problems.

摘要

在本文中,提出并研究了两种混合正则化框架LSQR-Tik和Tik-LSQR,它们整合了直接正则化方法(蒂霍诺夫法)和迭代正则化方法(LSQR)的特性,用于解决心电图逆问题。LSQR-Tik方法基于兰乔斯过程,该过程产生一系列小的双对角系统来近似原始的不适定问题,然后应用蒂霍诺夫正则化方法来稳定投影问题。Tik-LSQR方法被制定为一种迭代LSQR逆算法,并增加了一个类似蒂霍诺夫的先验信息项。使用逼真的心脏-躯干模型模拟协议评估这两种混合方法的性能,其中采用心脏表面源方法从动作电位(AP)计算模拟的心外膜电位(EP),然后使用获取的EP来计算模拟的体表电位(BSP)。结果表明,LSQR-Tik方法获得的正则化解与蒂霍诺夫方法的解相近,然而,LSQR-Tik方法的计算成本远低于蒂霍诺夫方法。此外,Tik-LSQR方案可以更准确地重建心外膜电位分布,特别是对于噪声较大的BSP情况。这项研究表明,对于心电图逆问题,混合正则化方法可能比单独的正则化方法更有效。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验