Suppr超能文献

敏感性梯度映射(SGM):一种用于产生正性对比的新后处理方法,应用于超顺磁性氧化铁颗粒(SPIO)标记的细胞。

Susceptibility gradient mapping (SGM): a new postprocessing method for positive contrast generation applied to superparamagnetic iron oxide particle (SPIO)-labeled cells.

作者信息

Dahnke Hannes, Liu Wei, Herzka Daniel, Frank Joseph A, Schaeffter Tobias

机构信息

Medical Imaging Systems Sector, Philips Research Europe, Hamburg, Germany.

出版信息

Magn Reson Med. 2008 Sep;60(3):595-603. doi: 10.1002/mrm.21478.

Abstract

Local susceptibility gradients result in a dephasing of the precessing magnetic moments and thus in a fast decay of the NMR signals. In particular, cells labeled with superparamagnetic iron oxide particles (SPIOs) induce hypointensities, making the in vivo detection of labeled cells from such a negative image contrast difficult. In this work, a new method is proposed to selectively turn this negative contrast into a positive contrast. The proposed method calculates the susceptibility gradient and visualizes it in a parametric map directly from a regular gradient-echo image dataset. The susceptibility gradient map is determined in a postprocessing step, requiring no dedicated pulse sequences or adaptation of the sequence before and during image acquisition. Phantom experiments demonstrated that local susceptibility differences can be quantified. In vivo experiments showed the feasibility of the method for tracking of SPIO-labeled cells. The method bears the potential also for usage in other applications, including the detection of contrast agents and interventional devices as well as metal implants.

摘要

局部磁化率梯度会导致进动磁矩失相,从而使核磁共振信号快速衰减。特别是,用超顺磁性氧化铁颗粒(SPIO)标记的细胞会产生低信号强度,使得从这种负性图像对比度中在体内检测标记细胞变得困难。在这项工作中,提出了一种新方法,可将这种负性对比度选择性地转变为正性对比度。所提出的方法直接从常规梯度回波图像数据集中计算磁化率梯度并将其在参数图中可视化。磁化率梯度图是在一个后处理步骤中确定的,在图像采集之前和期间不需要专门的脉冲序列或对序列进行调整。模型实验表明局部磁化率差异可以被量化。体内实验证明了该方法用于追踪SPIO标记细胞的可行性。该方法还具有用于其他应用(包括造影剂和介入装置以及金属植入物的检测)的潜力。

相似文献

4
Positive contrast magnetic resonance imaging of cells labeled with magnetic nanoparticles.
Magn Reson Med. 2005 May;53(5):999-1005. doi: 10.1002/mrm.20477.
8
R2 and R2* mapping for sensing cell-bound superparamagnetic nanoparticles: in vitro and murine in vivo testing.
Radiology. 2007 Nov;245(2):449-57. doi: 10.1148/radiol.2451061345. Epub 2007 Sep 11.

引用本文的文献

2
Positive susceptibility-based contrast imaging with dephased balanced steady-state free precession.
Magn Reson Med. 2025 Jul;94(1):59-72. doi: 10.1002/mrm.30421. Epub 2025 Mar 13.
3
Advancing MRI with magnetic nanoparticles: a comprehensive review of translational research and clinical trials.
Nanoscale Adv. 2024 Apr 2;6(9):2234-2259. doi: 10.1039/d3na01064c. eCollection 2024 Apr 30.
4
Positive visualization of MR-compatible nitinol stent using a susceptibility-based imaging technique.
Quant Imaging Med Surg. 2019 Mar;9(3):477-490. doi: 10.21037/qims.2019.03.15.
5
Myocardial inflammation, injury and infarction during on-pump coronary artery bypass graft surgery.
J Cardiothorac Surg. 2017 Dec 16;12(1):115. doi: 10.1186/s13019-017-0681-6.
6
Tracking and Quantification of Magnetically Labeled Stem Cells using Magnetic Resonance Imaging.
Adv Funct Mater. 2016 Jun 14;26(22):3899-3915. doi: 10.1002/adfm.201504444. Epub 2016 Feb 17.
7
Positive Contrast MRI Techniques for Visualization of Iron-Loaded Hernia Mesh Implants in Patients.
PLoS One. 2016 May 18;11(5):e0155717. doi: 10.1371/journal.pone.0155717. eCollection 2016.
8
Positive contrast spiral imaging for visualization of commercial nitinol guidewires with reduced heating.
J Cardiovasc Magn Reson. 2015 Dec 22;17:114. doi: 10.1186/s12968-015-0219-9.
9
Magnetic Resonance-guided Active Catheter Tracking.
Magn Reson Imaging Clin N Am. 2015 Nov;23(4):579-89. doi: 10.1016/j.mric.2015.05.009. Epub 2015 Jul 6.
10
Molecular magnetic resonance imaging of atherosclerotic vessel wall disease.
Eur Radiol. 2016 Mar;26(3):910-20. doi: 10.1007/s00330-015-3881-2. Epub 2015 Jul 3.

本文引用的文献

1
Dephased MRI.
Magn Reson Med. 2006 Jan;55(1):92-7. doi: 10.1002/mrm.20733.
2
Positive contrast magnetic resonance imaging of cells labeled with magnetic nanoparticles.
Magn Reson Med. 2005 May;53(5):999-1005. doi: 10.1002/mrm.20477.
4
Susceptibility weighted imaging (SWI).
Magn Reson Med. 2004 Sep;52(3):612-8. doi: 10.1002/mrm.20198.
5
Efficient magnetic cell labeling with protamine sulfate complexed to ferumoxides for cellular MRI.
Blood. 2004 Aug 15;104(4):1217-23. doi: 10.1182/blood-2004-02-0655. Epub 2004 Apr 20.
6
Passive tracking exploiting local signal conservation: the white marker phenomenon.
Magn Reson Med. 2003 Oct;50(4):784-90. doi: 10.1002/mrm.10574.
9
Magnetic resonance imaging of atherosclerotic plaques using superparamagnetic iron oxide particles.
J Magn Reson Imaging. 2001 Oct;14(4):355-61. doi: 10.1002/jmri.1194.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验