Scheike Thomas H, Zhang Mei-Jie
Department of Biostatistics, University of Copenhagen, Copenhagen, Denmark.
Lifetime Data Anal. 2008 Dec;14(4):464-83. doi: 10.1007/s10985-008-9094-0. Epub 2008 Aug 28.
In this paper we consider different approaches for estimation and assessment of covariate effects for the cumulative incidence curve in the competing risks model. The classic approach is to model all cause-specific hazards and then estimate the cumulative incidence curve based on these cause-specific hazards. Another recent approach is to directly model the cumulative incidence by a proportional model (Fine and Gray, J Am Stat Assoc 94:496-509, 1999), and then obtain direct estimates of how covariates influences the cumulative incidence curve. We consider a simple and flexible class of regression models that is easy to fit and contains the Fine-Gray model as a special case. One advantage of this approach is that our regression modeling allows for non-proportional hazards. This leads to a new simple goodness-of-fit procedure for the proportional subdistribution hazards assumption that is very easy to use. The test is constructive in the sense that it shows exactly where non-proportionality is present. We illustrate our methods to a bone marrow transplant data from the Center for International Blood and Marrow Transplant Research (CIBMTR). Through this data example we demonstrate the use of the flexible regression models to analyze competing risks data when non-proportionality is present in the data.
在本文中,我们考虑了在竞争风险模型中估计和评估协变量对累积发病率曲线影响的不同方法。经典方法是对所有特定病因风险进行建模,然后基于这些特定病因风险估计累积发病率曲线。另一种最近的方法是通过比例模型直接对累积发病率进行建模(Fine和Gray,《美国统计协会杂志》94:496 - 509,1999),然后直接获得协变量如何影响累积发病率曲线的估计值。我们考虑一类简单且灵活的回归模型,这类模型易于拟合,并且包含Fine - Gray模型作为特殊情况。这种方法的一个优点是我们的回归建模允许非比例风险。这导致了一种用于比例子分布风险假设的新的简单拟合优度检验程序,该程序非常易于使用。该检验具有建设性,因为它能确切显示非比例性存在的位置。我们将我们的方法应用于国际血液和骨髓移植研究中心(CIBMTR)的骨髓移植数据。通过这个数据示例,我们展示了在数据存在非比例性时,使用灵活回归模型分析竞争风险数据的方法。