Suppr超能文献

左截断和右删失情况下特定病因累积发病率估计及精细灰色模型

Cause-specific cumulative incidence estimation and the fine and gray model under both left truncation and right censoring.

作者信息

Geskus Ronald B

机构信息

Academic Medical Center, Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands.

出版信息

Biometrics. 2011 Mar;67(1):39-49. doi: 10.1111/j.1541-0420.2010.01420.x.

Abstract

Summary The standard estimator for the cause-specific cumulative incidence function in a competing risks setting with left truncated and/or right censored data can be written in two alternative forms. One is a weighted empirical cumulative distribution function and the other a product-limit estimator. This equivalence suggests an alternative view of the analysis of time-to-event data with left truncation and right censoring: individuals who are still at risk or experienced an earlier competing event receive weights from the censoring and truncation mechanisms. As a consequence, inference on the cumulative scale can be performed using weighted versions of standard procedures. This holds for estimation of the cause-specific cumulative incidence function as well as for estimation of the regression parameters in the Fine and Gray proportional subdistribution hazards model. We show that, with the appropriate filtration, a martingale property holds that allows deriving asymptotic results for the proportional subdistribution hazards model in the same way as for the standard Cox proportional hazards model. Estimation of the cause-specific cumulative incidence function and regression on the subdistribution hazard can be performed using standard software for survival analysis if the software allows for inclusion of time-dependent weights. We show the implementation in the R statistical package. The proportional subdistribution hazards model is used to investigate the effect of calendar period as a deterministic external time varying covariate, which can be seen as a special case of left truncation, on AIDS related and non-AIDS related cumulative mortality.

摘要

摘要 在存在左截断和/或右删失数据的竞争风险环境中,特定病因累积发病率函数的标准估计量可以写成两种不同形式。一种是加权经验累积分布函数,另一种是乘积限估计量。这种等价性为分析带有左截断和右删失的事件发生时间数据提供了另一种视角:仍处于风险中或经历了更早竞争事件的个体从删失和截断机制中获得权重。因此,可以使用标准程序的加权版本在累积尺度上进行推断。这适用于特定病因累积发病率函数的估计以及Fine和Gray比例子分布风险模型中回归参数的估计。我们表明,通过适当的过滤,鞅性质成立,这使得可以以与标准Cox比例风险模型相同的方式推导比例子分布风险模型的渐近结果。如果软件允许纳入随时间变化的权重,那么特定病因累积发病率函数的估计和子分布风险的回归可以使用生存分析的标准软件来进行。我们展示了在R统计软件包中的实现。比例子分布风险模型用于研究日历期作为确定性外部时变协变量(可视为左截断的一种特殊情况)对艾滋病相关和非艾滋病相关累积死亡率的影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验